• Title/Summary/Keyword: fatigue cycles

Search Result 575, Processing Time 0.03 seconds

Diagnosis and Monitoring of Socket Welded Pipe Damaged by Bending Fatigue Using Acoustic Emission Technique (음향방출법을 이용한 굽힘피로 손상된 소켓용접배관의 진단 및 감시)

  • Kim, C.S.;Oh, S.W.;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.323-330
    • /
    • 2008
  • High cycle bending fatigue of socket welded small bore pipe was characterized, and also the fatigue crack initiation of small bore pipe was monitored in situ by the acoustic emission (AE) technique. The STS 316L stainless steel specimens were prepared by gas tungsten arc welding (GTAW) process having the artificial defect (i.e., lack of penetration) and defect free at the root. The fatigue failure was occurred at the loc for high stress and root for relatively low stress. The crack initiation cycles ($N_i$) was defined to the abrupt increase in AE counts during the fatigue test, and then the cracks were observed by the radiographic test and electron microscope before and after the fatigue crack initiation cycles. The socket welded pipe damaged by bending fatigue was studied regarding the welding defect, failure mode, and crack initiation cycles for the diagnosis and monitoring.

Fatigue Crack Propagation and Fatigue Life Evaluation of High-Performance Steel using Modified Forman Model (수정 Forman 모델을 이용한 고성능 강재의 피로균열전파와 피로수명평가)

  • Choi, Sung-Won;Kang, Dong-Hwan;Lee, Jong-Kwan;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1361-1368
    • /
    • 2011
  • Fatigue crack propagation behavior and the fatigue life in-high performance steel were investigated by means of fatigue crack propagation tests under constant loading conditions of 'R=0.1 and f=0.1 Hz', 'R=0.3 and f=0.3 Hz', and 'R=0.5 and f=0.5 Hz' for the load ratio and frequency, respectively. A modified Forman model was developed to describe the fatigue crack propagation behavior for the conditions. The modified Forman model is applicable to all fatigue crack propagation regions I, II, and III by implementing the threshold stress intensity factor range and the effective stress intensity factor range caused by crack closure. The results show that predicted fatigue lives of Forman and modified Forman models were 8,814 and 12,292 cycles, respectively when the crack propagated approximately 5.0 mm and the load ratio and frequency were both 0.1. Comparison of the test results indicates that the modified Forman model showed much more effective fatigue crack propagation behavior in high-performance steel.

The Efficacy of Newly Designed Screw for Prevention of the Screw Breakage in Syndesmosis Fixation: Biomechanical Study (나사 파단 예방을 위해 새로 디자인한 경비 인대 결합 나사의 효용성: 생역학 연구)

  • Lee, Dong-Oh;Song, Sang-Heon
    • Journal of Korean Foot and Ankle Society
    • /
    • v.24 no.2
    • /
    • pp.94-97
    • /
    • 2020
  • Purpose: Fatigue breakage of cortical screws sometimes occurs after syndesmosis fixation, regardless of the period of screw retention. This study compared the fatigue strength of a novel screw design to conventional cortical screws in the fixed state of syndesmosis. Materials and Methods: Twelve sawbone models were tested mechanically to determine the fatigue strength of three screw designs. The first group was composed of cortical screws, while the second and third groups were newly-designed screws. The second group was composed of screws with a 2.4-mm diameter thread-free portion of the mid-shank while the third group had a 2.0-mm diameter thread-free mid-shank. A 400 N load was applied repetitively to a fibula model and the number of cycles until screw failure was recorded. Four screws from each group were tested, giving a total of 12 fatigue tests. Results: The average cycles until screw failure for groups 1, 2, and 3 were 8,134, 63,186, and 2,581, respectively. The second group showed the highest fatigue strength (p=0.018). The other two screw designs showed similar fatigue strength (p=0.401). Conclusion: New screw designs with a thread-free portion in the mid-shank could reduce the occurrence of fatigue breakage after syndesmosis fixation.

The Thermal Fatigue Analysis and Life Evaluation of Solder Joint for Flip Chip Package using Darveaux Model (Darveaux 모델에 의한 플립칩 패키지 솔더 접합부의 열피로 해석 및 수명 평가)

  • Shin Young-Eui;Kim Yeon-Sung;Kim Jong-Min;Choi Myun-Gi
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.36-42
    • /
    • 2004
  • Experimental and numerical approaches on the thermal fatigue for the solder joint of flip chip package are discussed. However, it is one of the most difficult problems to choose the proper fatigue model. It was found that viscoplstic FE model with Darveaux method was very desirable and useful to predict the thermal fatigue life of solder joint for flip chip package under $208{\~}423K$ thermal cycling condition such as steep slope of temperature(JEDEC standard condition C). Thermal fatigue life was 1075 cycles as a result of viscoplatic model. It was a good agreement compared to the experimental. And also, it was found from the experimental that probability of the thermal fatigue life was $60{\%}$ at 1500 cycles.

An Evaluation Method of Fatigue Strength and Reliability in a Railway Wheel with an Application of Strength-Stress Interference Model (강도-응력 간섭모델을 적용한 철도차량용 차륜의 피로강도 및 신뢰성 평가법)

  • 박병노;김기환;김호경
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.2
    • /
    • pp.118-124
    • /
    • 2002
  • The failure probability of wheel beyond 10$\^$7/ cycles is achieved by the strengths-stress interference model for the evaluation of fatigue strength and reliability in the wheel, From plane bending fatigue test results, the fatigue life (N$\_$f/) for the smooth and 200㎛ holed specimens can be represented as $\sigma$$\_$a/ = 1326N$\_$f/$\^$-0.10/ and $\sigma$$\_$a/ = 2894N$\_$f/$\^$-0.18/. Respectively, fatigue strength of the wheel at beyond 10$\^$7/cycles was about 332 MPa. And, the fatigue strength for the specimen with a micro hole (d=200㎛) which simulated an inclusion on the wheel surface was about 235 MPa. Thus, a micro hole (d=200㎛) caused about 30% reduction of fatigue strength of the specimen. The failure probabilities for the smooth and micro-holed specimens, derived from the strength-stress interference model, are 0.0148% and 13.05%, respectively. The current finding suggests that at least 200 ㎛ sized inclusion, which might be produced during manufacturing process, will cause a critical effect on integrity of the railway vehicle.

A study on the corrosion fatigue fracture behavior of ion-nitrided SM45C under alternating tension-compression loading (반복인장-압축하중을 받는 이온질화 처리한 SM45C의 부식피로 파괴거동에 관한 연구)

  • 우창기;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.451-460
    • /
    • 1989
  • This paper dealt with the effect of the ratios N2 to H2 gas on the corrosion fatigue failure behavior of ion-nitrided SM45C steel specimens. The specimens were water cooled after ion-nitriding at 500.deg. C for 3hrs in 5 Torr, 0.8N$_{2}$ and 0.5N$_{2}$ atmospheres. As the nitrogen concentration increases, the higher compressive residual stresses developed in the surface layer and the depth of nitrided layer increased, which in turn gave rise to increases in fatigue strength and corrosion fatigue life. In the region less than 1.5 * 10$^{5}$ cycles, fatigue failure initiated at the brittle nitrided case, whereas in the region higher than 1.5 * 10$^{5}$ cycles crack initiated from the non-metallic inclusions in the subsurface. The initiation of corrosion fatigue failure was mainly attributed to pitting of case hardened surface layer.

A Study on the Fatigue Failure Behavior SM45C on Ion-Nitrided under Alternating Tension-Compression Axial Loading (반복 인장-압축하중을 받는 이온질화처리한 SM 45C의 피로파괴거동에 관한 연구)

  • Man, Chang-Gi;Kim, Hui-Song
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.3
    • /
    • pp.71-80
    • /
    • 1988
  • This paper dealt with experimentally the effect of $N_2$ and $H_2$ gas mixtures ratio in the fatigue characteristics of SM45C on Ion-nitrided. The specimen were treated water cooling after Ion-nitriding at $500^{\circ}C$ and 5 torr. in 80% $N_2$and 50% $N_2$gas mixtures ratio in the atmosphere for 3 hrs. The hardness distribution and the depth of nitriding layer shows more increase in 80% $N_2$gas mixture ratio than 50% $N_2$. Ion-nitrided specim- en for 80% $N_2$gas mixture ratio show more increase infatigue strenght in the $>1.5{\times}10^5$ cycles region than 50% $N_2$. In the $<1.5{\times}10^5$cycles region, fatigue failure is due to cracking of the brittle nitrided case, and the propergation of the surface cracks into the core. But in the $>1.5{\times}10^5$cycles region, it is found that cracks propagate from the non-metallic inclusions in the subsurface.

  • PDF

A Study on the fatigue deformation behavior of granitic stone in Korea (국내화강석재의 피로변형거동에 관한 연구)

  • 김재동;정윤영;장보안
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.144-156
    • /
    • 1996
  • The deformation behaviors under uniaxial compressive cyclic loading were investigated for fresh rocks and freeze-thaw cycled samples. The Pocheon granite which is one of the most popular building stone in Korea was selected for tests. 0.5 Hz and 50% of dynamic strength were used as test conditions for frequency and fatigue span, respectively. For freezethaw procedure, sample were frozen for 3 hours under the temperature of -2$0^{\circ}C$ and then followed 3 hours thawing under the temperature of +2$0^{\circ}C$. Twenty seven samples were used as untreated and seventy three for freeze-thaw samples. No failure occurred up to 15000 cycles at the stress level of 60% of dynamic strength, indicating that the lowest strees level for fatigue failure may be around 60% of dynamic strength. Permanent strain and damping capacity curves show that there were three stages when rock behaves like under creep. Young's moduli were increased and Possion's ratios were decreased with the increase of the number of cycles. Possion's ratios varied more rapidly than Young's moduli did with the increase of the number of cycles. This may represent that most microcracks developed by fatigue stress are parallel to the axis of loading. The deformation behavior of freeze-thaw cycled samples were almost the same as that of untreated samples. However, the result of freeze-thaw cycled samples showed lower regression constant, indicating that the physical durability of rock is much lowered because of cyclic temperature variation.

  • PDF

A Study on the Prediction of Fatigue Life in 2024-T3 Aluminium using X-ray Half-Value Breadth (X선 반가폭을 이용한 Al 2024-T3 합금의 피로수명예측에 관한 연구)

  • 조석수;김순호;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.145-152
    • /
    • 2000
  • X-ray diffraction method detects change of crystal lattice distance under material surface using diffraction angle 2$\theta$. This technique can be applied to the behavior on slip band and micro crack due to material degradation. The relation between half-value breadth and number of cycle has three stages which constitute rapid decrease in initial number of cycles, slight decrease in middle number of cycles and rapid decrease in final number of cycles. The ratio of half-value breadth takes a constant value on B/B$_{0}$-N diagram with loading condition except early part of fatigue life. The ratio of half-value breadth B/B$_{0}$ with respect to number of cycle to failure N$_{f}$ has linear behavior on B/B$_{0}$-log N$_{f}$ diagram. Therefore, in this paper the estimation of fatigue life by average gradient method has much less estimated mean error than the estimation of fatigue life by log B/B$_{0}$-log N/N$_{f}$ relation.elation.ation.

  • PDF

Fatigue Behavior of Prestressed Concrete Beams Using FRP Tendons (FRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 피로 거동)

  • Kim, Kyoung-Nam;Park, Sang-Yeol;Kim, Chang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.135-144
    • /
    • 2011
  • Recently, researches about fiber reinforced polymer (FRP) which has excellent durability, corrosion resistance, and tensile strength as a substitution material to steel tendon have been actively pursued. This study is performed to examine FRP tendon used prestressed beam's safety under service load. The specimen was a prestressed concrete beam with internal bonded FRP tendon. In order to compare the member fatigue capacity, a control specimen of a prestressed concrete beam with ordinary steel tendon was tested. A fatigue load was applied at a load range of 60%, 70%, and 80% of the 40% ultimate load, which was obtained though a static test. The fatigue load was applied as a 1~3 Hz sine wave with 4 point loading setup. Fatigue load with maximum 1 million cycles was applied. The specimen applied with a load ranging between 40~60% did not show a fatigue failure until 1 million cycles. However, it was found that horizontal cracks in the direction of tendons were found and bond force between the tendon and concrete was degraded as the load cycles increased. This fatigue study showed that the prestressed concrete beam using FRP tendon was safe under a fatigue load within a service load range. Fatigue strength of the specimen with FRP and steel tendon after 1 million cycles was 69.2% and 59.8% of the prestressed concrete beam's static strength, respectively.