• Title/Summary/Keyword: fat oxidation

Search Result 336, Processing Time 0.023 seconds

A Study on the Optimal Exercise Intensity for the Fat Oxidation of Fat Women (비만여성의 지방연소를 위한 최적운동강도에 관한 연구)

  • Choi, Young-Deog;Oh, Kyung-Hwan;Lim, Jong-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.2
    • /
    • pp.1039-1045
    • /
    • 2001
  • The aim of this study is to show the results which we analyse the interrelation among the physiological variable elements. We survey thirty fat women who don't do exercise regularly and are thirties. in order to offer basic data for setting the optimal exercise intensity through the efficient fat oxidation. We use RAMP II protocol of the Ever Green Hospital. The results are followings: 1. When the optimal exercise intensity for fat oxidation is done, there's a meaningful relation among the fat oxidation, $O_2$ max, and respiratory change. 2. When the optimal exercise intensity for fat oxidation is done, there's no meaningful relation statistically in $O_2$ max, heart rate, respiratory change, and caloric rate. 3. When the optimal exercise intensity for fat oxidation is done, there's a meaningful difference among three groups in %$VO_2$ max. However, there's a meaningful difference between group C and group A. B, and there's no meaningful difference between group B and group A.

  • PDF

Preceding Research for Estimating the Maximal Fat Oxidation Point through Heart Rate and Heart Rate Variability (심박 및 심박변화를 통한 최대 지방 연소 시점의 추정)

  • Sim, Myeong-Heon;Kim, Min-Yong;Yoon, Chan-Sol;Chung, Joo-Hong;Noh, Yeon-Sik;Park, Sung-Bin;Yoon, Hyung-Ro
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1340-1349
    • /
    • 2012
  • Increasing the oxidation of fat through exercise is the recommendable method for weight control. Preceding researches have proposed increase in the usage of fat during exercise in stabilized state and under maximum exertion through aerobic training. However, such researches require additional equipment for gas analysis in order to measure the caloric value or gas exchange of subjects during exercise. Such equipments become highly restrictive for those exercise and cause substantially higher cost. According to this, we have presented the method of estimating the maximal fat oxidation point through changes in LF & HF which reflects changes in heart rate and the autonomic nervous system in order to induce exercise for a less restrictive and efficient fat oxidation than existing methods. We have conducted exercise stress test on subject with similar exercise abilities, and have detected the changes in heart rate and changes in LF & HF by measuring changes in fat oxidation and measuring ECG signals at the same time through a gas analyzer. Changes in heart rate and HRV of the subjects during exercising was detected through only the electrocardiographic signals from exercising and detected the point of maximum fat oxidation that differs from person to person. The experiment was carried out 16 healthy males, and used Modified Bruce Protocol, which is one of the methods of exercise stress test methods that use treadmill. The fat oxidation amount during exercise of all the subjects showed fat oxidation of more than 4Fkcal/min in the exercise intensity from about 5 minutes to 10 minutes. The correlation between the maximal fat oxidation point obtained through gas analysis and the point when 60% starts to be relevant in the range from -0.01 to 0.01 seconds for values of R-R interval from changes in heart rate had correlation coefficients of 0.855 in Kendall's method and in Spearman's rho, it showed significant results of it being p<0.01 with 0.950, respectively. Furthermore, in the changes in LF & HF, we have determined the point where the normalized area value starts to become the same as the maximal fat oxidation point, and the correlation here showed 0.620 in Kendall and 0.780 in Spearma of which both showed significant results as p<0.01.

Increased Rate of Palmitate Oxidation in Adults Female: Comparison with Peri-pubertal Young Female Rats

  • Lee, Se-Young;Kim, Jong-Yeon;Kim, Yong-Woon;Park, So-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.283-287
    • /
    • 2006
  • Although estrogen is known to playa role in fatty acid metabolism, it remains unclear whether fatty acid oxidation in mature female rats differs from fatty acid oxidation in peri-pubertal young rats. In this study, we measured fatty acid metabolism in the skeletal muscles and livers of 5 and 50 weeks old male and female rats. The rate of palmitate oxidation in the liver and gastrocnemius red in the 50-week-old female rats were elevated as compared to the 5-week-old females, whereas there were no differences in the male rats. The rate of palmitate oxidation in the gastrocnemius red was correlated inversely with intra-abdominal fat mass in the 5-week-old male and female rats, whereas the palmitate oxidation rate was positively correlated with fat mass in the liver and gastrocnemius red in the 50-week-old rats. HOMA-IR and plasma insulin levels were positively correlated with intra-abdominal fat mass in the pooled 50-week-old male and female rats, but this correlation was not apparent in 5-week-old rats. In summary, the rate of fatty acid oxidation measured in the middle-aged adult female rats was significantly higher than those measured in the peri-pubertal young female rats. This difference may be attributed to the influence of ovarian hormones.

Effect of Multiple Freeze-Thaw Cycles on Lipid Degradation and Lipid Oxidation of Grass Carp Surimi Containing Different Amounts of Pork Back Fat

  • Shang, Xiaolan;Du, Juan;Zhao, Yuhan;Tian, Jiajia;Jiang, Shuhui
    • Food Science of Animal Resources
    • /
    • v.41 no.6
    • /
    • pp.923-935
    • /
    • 2021
  • Fresh grass carp was used to produce surimi samples that were supplemented with 50 g/kg, 100 g/kg, or 150 g/kg pork back fat. The lipid composition, lipase activity, lipid oxidation index, and lipoxygenase activity of samples subjected to repeated freezethaw process were determined to assess the effects of the added fat on lipolysis and lipid oxidation of grass carp surimi. Freeze-thaw treatment increased free fatty acid content, mainly due to the decomposition of phospholipids and some neutral lipids by lipase. With repeated freeze-thaw treatment, the levels of free fatty acids and phospholipids were correlated with the lipid oxidation indexes and lipoxygenase activity, indicating that lipid degradation can promote lipid oxidation. In the same freeze-thaw cycle, surimi products with high fat content are more vulnerable to oxidative damage, neutral lipids are the main source of free fatty acids in the early stage of freeze-thaw, and phospholipids are the main source of free fatty acids in the late stage.

Effect of Homogenization Pressure on Plasmin Activity and Mechanical Stress-Induced Fat Aggregation of Commercially Sterilized Ultra High Temperature Milk during Storage

  • Kim, Sun-Chul;Yun, So-Yul;Ahn, Na-Hyun;Kim, Seong-Min;Imm, Jee-Young
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.734-745
    • /
    • 2020
  • Commercially sterilized ultra high temperature (UHT) milk was manufactured at different homogenization pressures (20, 25, and 30 MPa), and changes in fat particle size, mechanical stress-induced fat aggregation, plasmin activity, and lipid oxidation were monitored during ambient storage of the UHT milk for up to 16 wk. The particle sizes of milk fat globules were significantly decreased as homogenization pressure increased from 20 to 30 MPa (p<0.05). The presence of mechanical stress-induced fat aggregates in milk produced at 20 MPa was significantly higher than for UHT milk produced at either 25 or 30 MPa. This difference was maintained all throughout the storage. There were no significant differences in plasmin activity, trichloroacetic acid (12%, w/v) soluble peptides, and the extent of lipid oxidation. Based on these results, an increase of homogenization pressure from 20 (the typical homogenization pressure employed in the Korea dairy industry) to 25-30 MPa significantly decreased mechanical stress-induced fat aggregation without affecting susceptibility to lipid oxidation during storage.

Troglitazone Regulates white Adipose Tissue Metabolism by Activating Genes Involved in Fatty Acid ${\beta}$-Oxidation in High Fat Diet-fed C57BL/6J Mice

  • Jeong, Sun-Hyo;Yoon, Mi-Chung
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.319-327
    • /
    • 2006
  • This study aimed to determine whether troglitazone stimulates genes related to fatty acid ${\beta}$-oxidation, leading to modulation of white adipose tissue (WAT) metabolism in high fat diet-fed mice. Female C57BL/6J mice were randomly divided into two groups (n=10/group). After they received either a high fat diet or the same high fat diet supplemented with troglitazone for 4 weeks, the effects of troglitazone on gene expression and physiology of WAT were measured using Northern, histological and serological analyses. Administration of troglitazone induced the expression of genes involved in mitochondrial and peroxisomal fatty acid ${\beta}$-oxidation in mesenteric WAT. Troglitazone also significantly increased uncoupling protein 2 mRNA levels. The changes in WAT gene expression were accompanied by reductions in circulating levels of free fatty acids and triglycerides as well as glucose and insulin. Histological studies showed that troglitazone treatment decreased the average size of adipocytes in mesenteric WAT. These results suggest that troglitazone-stimulated WAT expression of genes associated with fatty acid ${\beta}$-oxidation regulates WAT metabolism of high fat diet-fed mice, contributing to improvement of insulin sensitivity.

  • PDF

Effect of mild-intensity exercise training with capsiate intake on fat deposition and substrate utilization during exercise in diet-induced obese mice

  • Hwang, Deunsol;Seo, Jong-beom;Kim, Jisu;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.3
    • /
    • pp.1-6
    • /
    • 2020
  • [Purpose] While the anti-obesity effects of exercise and capsiate are well-observed individually, the effect of exercise with capsiate intake has not been systematically explored yet. Therefore, the purpose of this study is to investigate whether the anti-obesity effects of exercise training can be further enhanced by capsiate intake. [Methods] 8-week-old male mice were divided into 3 groups (n = 8 per group): sedentary group (SED; nontrained), exercise-trained group (EXE) and exercise-trained group with 10 mg/kg of capsiate intake (EXE+CAP). All mice were offered high-fat diet and water ad libitum. The mild-intensity treadmill training was conducted 5 times a week for 8 weeks. After 8 weeks, metabolism during exercise and abdominal fat weight were measured. [Results] Body weight and the rate of total abdominal fat were significantly less in EXE+CAP than in SED but not between EXE and SED. The average of respiratory exchange rate during exercise was significantly much lower in EXE+SED (p = 0.003) compared to the difference between EXE and SED (p = 0.025). Likewise, the fat oxidation during exercise was significantly much higher in EXE+SED (p = 0.016) compared to the difference between EXE and SED (p = 0.045). Then, the carbohydrate oxidation during exercise was significantly much lower in EXE+SED (p = 0.003) compared to the difference between EXE and SED (p = 0.028). [Conclusion] In conclusion, the anti-obesity functions of exercise training can be further enhanced by capsiate intake by increasing fat oxidation during exercise. Therefore, we suggest that capsiate could be a candidate supplement which can additively ameliorate obesity when combined with exercise.

Effects of oral caffeine and capsaicin administration on energy expenditure and energy substrates utilization in resting rats

  • Kim, Jisu;Jeon, Yerim;Hwang, Hyejung;Suh, Heajung;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.15 no.4
    • /
    • pp.183-189
    • /
    • 2011
  • Caffeine and capsaicin increase resting energy metabolism. However, most measurements have been conducted in short-term studies. Therefore, we investigated the effects of caffeine and capsaicin on energy expenditure and energy substrate utilization in resting rats for 6 h. The caffeine (Experiment 1) experiment included four male rats aged 5 weeks and measured the effects of oral administration of caffeine (10 or 50 mg/kg) on respiratory gas, energy expenditure, and energy substrate oxidation for 6 h. Experiment 2 included four male rats aged 6 weeks to measure the effects of capsaicin (10 mg/kg) using the same method as in Experiment 1. The results of Experiment 1 indicated that O2 uptake and carbohydrate oxidation after caffeine administration for 2 h was higher in the 10 mg trial than that in the 50 mg or placebo trials (P < 0.05). However fat oxidation was not significantly different. In contrast, capsaicin (Experiment 2) observed no differences between the placebo and the capsaicin trials. In conclusion, caffeine initially increased the resting energy consumption for 2 h, and this energy expenditure was due to carbohydrate oxidation. Capsaicin did not change oxygen uptake, respiratory exchange ratio, fat oxidation, or carbohydrate oxidation.

Oxidative Stability Fat in Milk Powder (분유의 유지 산화안정성)

  • Cha, Joon-Hwan;Choe, Eun-Ok
    • Applied Biological Chemistry
    • /
    • v.38 no.3
    • /
    • pp.259-262
    • /
    • 1995
  • Oxidative stabilities of fat in DHA(cis-4,7,10,13,16,19-docosahexaenoic acid)-added dry milk and ordinary dry milk during storage were studied by determining thiobarbituric acid values of samples. Two kinds of milk powder samples were purchased in the local supermarket and $2{\pm}0.05\;g$ of samples were transferred into serum bottles, which were stored under the light or under dark The oxidation of fat in DHA-added milk powder was higher than that of fat in ordinary milk powder and the acceleration was more evident in the presence of light Light and unsaturated fats accelerated synergistically oxidation of milk fat Addition of DABCO(diazabicyclooctane), which is an efficient singlet oxygen quencher, significantly decreased the photooxidation of milk fat This result clearly suggested that singlet oxygen oxidation (Type II reaction) was involved in the system. Deceleration of milk fat oxidation by DABCO was higher in the DHA-added milk powder.

  • PDF

Effect of Cytochrome c on Pork Fat Oxidation Measured by TBA Test (Cytochrome c가 돼지지방산화에 미치는 영향)

  • Lee, Moo-Ha;Cassens, R.G.
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.50-53
    • /
    • 1987
  • The effect of cytochrome on pork fat oxidation was studied either in the absence or in the presence of nitrite and/or ascorbate. Results showed that the back-fat oxidation measured by TBA test increased with increasing concentration of cytochrome c but the Increment decreased with increasing concentration. The addition of ascorbate alone to cytochrome c did not prevent the oxidation. The same result was obtained with the addition of nitrite alone to cytochrome c. However, the backfat oxidation was pretented by the addition of nitrite and ascorbate together With the rendered fat, the trends were more obvious than with backpat.

  • PDF