• Title/Summary/Keyword: fast-tracking

Search Result 545, Processing Time 0.021 seconds

A Tracking Algorithm to Certain People Using Recognition of Face and Cloth Color and Motion Analysis with Moving Energy in CCTV (폐쇄회로 카메라에서 운동에너지를 이용한 모션인식과 의상색상 및 얼굴인식을 통한 특정인 추적 알고리즘)

  • Lee, In-Jung
    • The KIPS Transactions:PartB
    • /
    • v.15B no.3
    • /
    • pp.197-204
    • /
    • 2008
  • It is well known that the tracking a certain person is a vary needed technic in the humanoid robot. In robot technic, we should consider three aspects that is cloth color matching, face recognition and motion analysis. Because a robot technic use some sensors, it is many different with the robot technic to track a certain person through the CCTV images. A system speed should be fast in CCTV images, hence we must have small calculation numbers. We need the statistical variable for color matching and we adapt the eigen-face for face recognition to speed up the system. In this situation, motion analysis have to added for the propose of the efficient detecting system. But, in many motion analysis systems, the speed and the recognition rate is low because the system operates on the all image area. In this paper, we use the moving energy only on the face area which is searched when the face recognition is processed, since the moving energy has low calculation numbers. When the proposed algorithm has been compared with Girondel, V. et al's method for experiment, we obtained same recognition rate as Girondel, V., the speed of the proposed algorithm was the more faster. When the LDA has been used, the speed was same and the recognition rate was better than Girondel, V.'s method, consequently the proposed algorithm is more efficient for tracking a certain person.

A Study on the Development of Ultrasonography Guide using Motion Tracking System (이미지 가이드 시스템 기반 초음파 검사 교육 기법 개발: 예비 연구)

  • Jung Young-Jin;Kim Eun-Hye;Choi Hye-Rin;Lee Chae-Jeong;Kim Seo-Hyeon;Choi Yu-Jin;Hong Dong-Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1067-1073
    • /
    • 2023
  • Breast cancer is one of the top three most common cancers in modern women, and the incidence rate is increasing rapidly. Breast cancer has a high family history and a mortality rate of about 15%, making it a high-risk group. Therefore, breast cancer needs constant management after an early examination. Among the various equipment that can diagnose cancer, ultrasound has the advantage of low risk and being able to diagnose in real time. In addition, breast ultrasound will be more useful because Asian women's breasts are denser and less sensitive. However, the results of ultrasound examinations vary greatly depending on the technology of the examiner. To compensate for this, we intend to incorporate motion tracking technology. Motion tracking is a technology that specifies and analyzes a location according to the movement of an object in a three-dimensional space. Therefore, real-time control is possible, and complex and fast movements can be recorded in real time. We would like to present the production of an ultrasound examination guide using these advantages.

Spherical Panorama Image Generation Method using Homography and Tracking Algorithm (호모그래피와 추적 알고리즘을 이용한 구면 파노라마 영상 생성 방법)

  • Munkhjargal, Anar;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.3
    • /
    • pp.42-52
    • /
    • 2017
  • Panorama image is a single image obtained by combining images taken at several viewpoints through matching of corresponding points. Existing panoramic image generation methods that find the corresponding points are extracting local invariant feature points in each image to create descriptors and using descriptor matching algorithm. In the case of video sequence, frames may be a lot, so therefore it may costs significant amount of time to generate a panoramic image by the existing method and it may has done unnecessary calculations. In this paper, we propose a method to quickly create a single panoramic image from a video sequence. By assuming that there is no significant changes between frames of the video such as in locally, we use the FAST algorithm that has good repeatability and high-speed calculation to extract feature points and the Lucas-Kanade algorithm as each feature point to track for find the corresponding points in surrounding neighborhood instead of existing descriptor matching algorithms. When homographies are calculated for all images, homography is changed around the center image of video sequence to warp images and obtain a planar panoramic image. Finally, the spherical panoramic image is obtained by performing inverse transformation of the spherical coordinate system. The proposed method was confirmed through the experiments generating panorama image efficiently and more faster than the existing methods.

Analysis of Arrival Information and Status of the Patients in Emergency Department (응급의료센터 환자의 내원 정보 및 실태 분석)

  • Lee, Sam-Beom;Do, Byung-Soo
    • Journal of Yeungnam Medical Science
    • /
    • v.16 no.2
    • /
    • pp.277-282
    • /
    • 1999
  • Background: For effective and systematic management of patients in the emergency department(ED), the data on patient arrival and status in ED of Yeungnam University Hospital were evaluated. Materials and Methods: During the seven days from Apr. 1 to Apr. 7, 1998, the general patient information such as onset time and place, factors associated with transportation, causes of admission, cared department and patient disposition were recorded. Results: Total of 464 patients visited the ED during the seven days, and the mean number of patients per day was 66.3. Male to female ratio was 1:0.71. Daily staying patients were 17.3, and 83.6 patients were cared totally each day. The methods of transportation and distribution of patients according to region and event were as follows: visit by walk(57.3%). transportation by car(58.0%), place of event in residence(85.3%), regional distribution in Taegu(81.5%), and direct visit(97.4%). Cause of admission due to diseases was 74.6%. The percentages of departments which cared the patients were internal medicine 26.6%, pediatrics 16.8%, orthopedics 8.6%, neurology 8.2%, neurosurgery 7.8% and other department including emergency medicine 8.2%, respectively. Patient dispositions were admission 38.4%, discharge 61.0% and death on arrival(DOA) 0.6%, but referred patient-to-another-hospital was zero. Conclusion: Improvements in several aspects of ED's caring system such as "fast tracking" system and reinforcement of disease and trauma caring system, would be helpful for effective management of emergency patients.

  • PDF

Signal-Subspace-Based Simple Adaptive Array and Performance Analysis (신호 부공간에 기초한 간단한 적응 어레이 및 성능분석)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.162-170
    • /
    • 2010
  • Adaptive arrays reject interferences while preserving the desired signal, exploiting a priori information on its arrival angle. Subspace-based adaptive arrays, which adjust their weight vectors in the signal subspace, have the advantages of fast convergence and robustness to steering vector errors, as compared with the ones in the full dimensional space. However, the complexity of theses subspace-based methods is high because the eigendecomposition of the covariance matrix is required. In this paper, we present a simple subspace-based method based on the PASTd (projection approximation subspace tracking with deflation). The orignal PASTd algorithm is modified such that eigenvectora are orthogonal to each other. The proposed method allows us to significantly reduce the computational complexity, substantially having the same performance as the beamformer with the direct eigendecomposition. In addition to the simple beamforming method, we present theoretical analyses on the SINR (signal-to-interference plus noise ratio) of subspace beamformers to see their behaviors.

Synthesis of scheelite-type nanocolloidal particles by pulsed laser ablation in liquid and their size distribution analysis

  • Lee, Jung-Il;Shim, Kwang Bo;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.111-119
    • /
    • 2014
  • A novel pulsed laser ablation process in liquid was investigated to prepare scheelite-type ceramic [calcium tungstate ($CaWO_4$) and calcium molybdate ($CaMoO_4$)] nanocolloidal particles. The crystalline phase, particle morphology, particle size distribution, absorbance and optical band-gap were investigated. Stable colloidal suspensions consisting of well-dispersed $CaWO_4$ and $CaMoO_4$ nanoparticles with narrow size distribution could be obtained without any surfactant. Particle tracking analysis using optical microscope combined with image analysis was applied for a fast determination of particle size distribution in the prepared nanocolloidal suspensions. The mean nanoparticle size of $CaWO_4$ and $CaMoO_4$ colloidal nanoparticles were 16 nm and 30 nm, with the standard deviations of 2.1 and 5.2 nm, respectively. The optical absorption edges showed blue-shifted values about 60~70 nm than those of reported in bulk crystals. And also, the estimated optical energy band-gaps of $CaWO_4$ and $CaMoO_4$ colloidal particles were 5.2 and 4.7 eV. The observed band-gap widening and blue-shift of the optical absorbance could be ascribed to the quantum confinement effect due to the very small size of the $CaWO_4$ and $CaMoO_4$ nanocolloidal particles prepared by pulsed laser ablation in liquid.

A Facial Feature Detection using Light Compensation and Appearance-based Features (빛 보상과 외형 기반의 특징을 이용한 얼굴 특징 검출)

  • Kim Jin-Ok
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.143-153
    • /
    • 2006
  • Facial feature detection is a basic technology in applications such as human computer interface, face recognition, face tracking and image database management. The speed of feature detection algorithm is one of the main issues for facial feature detection in real-time environment. Primary factors like a variation by lighting effect, location, rotation and complex background give an effect to decrease a detection ratio. A facial feature detection algorithm is proposed to improve the detection ratio and the detection speed. The proposed algorithm detects skin regions over the entire image improved by CLAHE, an algorithm for light compensation against varying lighting conditions. To extract facial feature points on detected skin regions, it uses appearance-based geometrical characteristics of a face. Since the method shows fast detection speed as well as efficient face-detection ratio, it can be applied in real-time application to face tracking and face recognition.

  • PDF

Nonlinear System State Estimating Using Unscented Particle Filters (언센티드 파티클 필터를 이용한 비선형 시스템 상태 추정)

  • Kwon, Oh-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1273-1280
    • /
    • 2013
  • The UKF algorithm for tracking moving objects has fast convergence speed and good tracking performance without the derivative computation. However, this algorithm has serious drawbacks which limit its use in conditions such as Gaussian noise distribution. Meanwhile, the particle filter(PF) is a state estimation method applied to nonlinear and non-Gaussian systems without these limitations. But this method also has some disadvantages such as computation increase as the number of particles rises. In this paper, we propose the Unscented Particle Filter (UPF) algorithm which combines Unscented Kalman Filter (UKF) and Particle Filter (PF) in order to overcome these drawbacks.The performance of the UPF algorithm was tested to compare with Particle Filter using a 2-DOF (Degree of Freedom) Pendulum System. The results show that the proposed algorithm is more suitable to the nonlinear and non-Gaussian state estimation compared with PF.

Webcam-Based 2D Eye Gaze Estimation System By Means of Binary Deformable Eyeball Templates

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.575-580
    • /
    • 2010
  • Eye gaze as a form of input was primarily developed for users who are unable to use usual interaction devices such as keyboard and the mouse; however, with the increasing accuracy in eye gaze detection with decreasing cost of development, it tends to be a practical interaction method for able-bodied users in soon future as well. This paper explores a low-cost, robust, rotation and illumination independent eye gaze system for gaze enhanced user interfaces. We introduce two brand-new algorithms for fast and sub-pixel precise pupil center detection and 2D Eye Gaze estimation by means of deformable template matching methodology. In this paper, we propose a new algorithm based on the deformable angular integral search algorithm based on minimum intensity value to localize eyeball (iris outer boundary) in gray scale eye region images. Basically, it finds the center of the pupil in order to use it in our second proposed algorithm which is about 2D eye gaze tracking. First, we detect the eye regions by means of Intel OpenCV AdaBoost Haar cascade classifiers and assign the approximate size of eyeball depending on the eye region size. Secondly, using DAISMI (Deformable Angular Integral Search by Minimum Intensity) algorithm, pupil center is detected. Then, by using the percentage of black pixels over eyeball circle area, we convert the image into binary (Black and white color) for being used in the next part: DTBGE (Deformable Template based 2D Gaze Estimation) algorithm. Finally, using DTBGE algorithm, initial pupil center coordinates are assigned and DTBGE creates new pupil center coordinates and estimates the final gaze directions and eyeball size. We have performed extensive experiments and achieved very encouraging results. Finally, we discuss the effectiveness of the proposed method through several experimental results.

A CPU and GPU Heterogeneous Computing Techniques for Fast Representation of Thin Features in Liquid Simulations (액체 시뮬레이션의 얇은 특징을 빠르게 표현하기 위한 CPU와 GPU 이기종 컴퓨팅 기술)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.2
    • /
    • pp.11-20
    • /
    • 2018
  • We propose a new method particle-based method that explicitly preserves thin liquid sheets for animating liquids on CPU-GPU heterogeneous computing framework. Our primary contribution is a particle-based framework that splits at thin points and collapses at dense points to prevent the breakup of liquid on GPU. In contrast to existing surface tracking methods, the our method does not suffer from numerical diffusion or tangles, and robustly handles topology changes on CPU-GPU framework. The thin features are detected by examining stretches of distributions of neighboring particles by performing PCA(Principle component analysis), which is used to reconstruct thin surfaces with anisotropic kernels. The efficiency of the candidate position extraction process to calculate the position of the fluid particle was rapidly improved based on the CPU-GPU heterogeneous computing techniques. Proposed algorithm is intuitively implemented, easy to parallelize and capable of producing quickly detailed thin liquid animations.