DOI QR코드

DOI QR Code

Synthesis of scheelite-type nanocolloidal particles by pulsed laser ablation in liquid and their size distribution analysis

  • Lee, Jung-Il (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Shim, Kwang Bo (Division of Materials Science and Engineering, Hanyang University) ;
  • Ryu, Jeong Ho (Department of Materials Science and Engineering, Korea National University of Transportation)
  • Received : 2014.05.28
  • Accepted : 2014.06.13
  • Published : 2014.06.30

Abstract

A novel pulsed laser ablation process in liquid was investigated to prepare scheelite-type ceramic [calcium tungstate ($CaWO_4$) and calcium molybdate ($CaMoO_4$)] nanocolloidal particles. The crystalline phase, particle morphology, particle size distribution, absorbance and optical band-gap were investigated. Stable colloidal suspensions consisting of well-dispersed $CaWO_4$ and $CaMoO_4$ nanoparticles with narrow size distribution could be obtained without any surfactant. Particle tracking analysis using optical microscope combined with image analysis was applied for a fast determination of particle size distribution in the prepared nanocolloidal suspensions. The mean nanoparticle size of $CaWO_4$ and $CaMoO_4$ colloidal nanoparticles were 16 nm and 30 nm, with the standard deviations of 2.1 and 5.2 nm, respectively. The optical absorption edges showed blue-shifted values about 60~70 nm than those of reported in bulk crystals. And also, the estimated optical energy band-gaps of $CaWO_4$ and $CaMoO_4$ colloidal particles were 5.2 and 4.7 eV. The observed band-gap widening and blue-shift of the optical absorbance could be ascribed to the quantum confinement effect due to the very small size of the $CaWO_4$ and $CaMoO_4$ nanocolloidal particles prepared by pulsed laser ablation in liquid.

Keywords

References

  1. A. Fojtik, M. Giersig and A. Henglein, "Formation of nanometer-size silicon particles in a laser induced plasma in $SiH_4$", Ber. Bunsenges. Phys. Chem. 97 (1993) 1493. https://doi.org/10.1002/bbpc.19930971112
  2. J. Heddersen, G. Chumanov and T.M. Cotton, "Laser ablation of metals: A new method for preparing SERS active colloids", Appl. Spectrosc. 47 (1993) 1959. https://doi.org/10.1366/0003702934066460
  3. A.V. Simakin, V.V. Voronov, G.A. Shafeev, R. Brayner and F.B. Verduraz, "Nanodisks of Au and Ag produced by laser ablation in liquid environment", Chem. Phys. Lett. 348 (2001) 182. https://doi.org/10.1016/S0009-2614(01)01136-8
  4. R.A. Ganeev, M. Baba, A.I. Ryasnyansky, M. Suzuki and H. Kuroda, "Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids", Opt. Commun. 240 (2004) 437. https://doi.org/10.1016/j.optcom.2004.06.049
  5. G.A. Shafeev, E. Freysz and F.B. Verduraz, "Nanoparticles produced by laser ablation of solids in liquid environment", Appl. Phys. A 78 (2004) 307. https://doi.org/10.1007/s00339-003-2357-4
  6. A. Iwabuchi, C.-K. Choo and K. Tanaka, "Titania nanoparticles prepared with pulsed laser ablation of rutile single crystals in water", J. Phys. Chem. B 108 (2004) 10863. https://doi.org/10.1021/jp049200d
  7. K.V. Anikin, N.N. Melnik, A.V. Simakin, G.A. Shafeev, V.V. Voronov and A.G. Vitukhnovsky, "Formation of ZnSe and CdS quantum dots via laser ablation in liquids", Chem. Phys. Lett. 366 (2002) 357. https://doi.org/10.1016/S0009-2614(02)01534-8
  8. R.A. Ganeev, M. Bara, A.I. Ryasnyansky, M. Suzuki and H. Kuroda, "Nonlinear refraction in CS", Appl. Phys. B 80 (2005) 595. https://doi.org/10.1007/s00340-004-1734-9
  9. T. Tsuji, T. Hamagami, T. Kawamura, J. Yamaki and M. Tsuji, "Laser ablation of cobalt and cobalt oxides in liquids: influence of solvent on composition of prepared nanoparticles", Appl. Surf. Sci. 243 (2005) 214. https://doi.org/10.1016/j.apsusc.2004.09.065
  10. H. Lange, "Comparative test of methods to determine particle size and particle size distribution in the submicron range", Part. Part. Syst. Charact. 12 (1995) 148. https://doi.org/10.1002/ppsc.19950120307
  11. S. Lee, S.P. Rao, M.H. Moon and J.C. Giddings, "Determination of mean diameter and particle size distribution of acrylate latex using flow field-flow fractionation, photon correlation spectroscopy, and electron microscopy", Anal. Chem. 68 (1996) 1545. https://doi.org/10.1021/ac9511814
  12. O. Elizalde, G.P. Leal and J.R. Leiza, "Particle size distribution measurements of polymeric dispersions: A comparative study", Part. Part. Syst. Charact. 17 (2000) 236. https://doi.org/10.1002/1521-4117(200012)17:5/6<236::AID-PPSC236>3.0.CO;2-0
  13. T. Provder, "Characterization of compositional heterogeneity in copolymers and coatings systems by GPC/FTIR", Prog. Org. Coat. 32 (1997) 143. https://doi.org/10.1016/S0300-9440(97)00043-X
  14. W. Schaertl and H. Sillescu, "Dynamics of colloidal hard spheres in thin aqueous suspension layers-particle tracking by digital image processing and brownian dynamics computer simulations", J. Colloid Interface Sci. 155 (1993) 313. https://doi.org/10.1006/jcis.1993.1040
  15. J.C. Crocker and D.G. Grier, "Methods of digital video microscopy for colloidal studies", J. Colloid Interface Sci. 179 (1996) 298. https://doi.org/10.1006/jcis.1996.0217
  16. B. Carr, T. Diaper and E. Barrett, Royal Society of Chemistry, Particulate System Analysis 2005, Stratford-upon-Avon, UK. p. 1.
  17. S.H. Yu, B. Liu, M.S. Mo, J.H. Huang, X.M. Liu and Y.T. Qian, "General synthesis of single-crystal tungstate nanorods/nanowires: A facile, low-temperature solution approach", Adv. Funct. Mater. 13 (2003) 639. https://doi.org/10.1002/adfm.200304373
  18. R. Grasser, E. Pitt, A. Scharmann and G. Zimmerer, "Optical properties of $CaWO_4$ and $CaMoO_4$ crystals in the 4 to 25 eV region", Phys. Status Solidi B 69 (1975) 359. https://doi.org/10.1002/pssb.2220690206
  19. J.H. Ryu, J.-W. Yoon, C.S. Lim, W.-C. Oh and K.B. Shim, "Microwave-assisted synthesis of nanocrystalline $MWO_4$ (M: Ca, Ni) via water-based citrate complex precursor", Ceramics International 31 (2005) 883. https://doi.org/10.1016/j.ceramint.2004.09.015
  20. A. Sen and P. Pramanik, "A chemical synthetic route for the preparation of fine-grained metal tungstate powders (M = Ca, Co, Ni, Cu, Zn)", J. Eur. Ceram. Soc. 21 (2001) 745. https://doi.org/10.1016/S0955-2219(00)00265-X
  21. W. Sleight, "Accurate cell dimensions for $ABO_4$ molybdates and tungstates", Acta Crystallogr. B 28 (1972) 2899. https://doi.org/10.1107/S0567740872007186
  22. W.S. Cho, M. Yashima, M. Kakihana, A. Kudo, T. Sakata and M. Yoshimura, "Active electrochemical dissolution of molybdenum and application for room-temperature synthesis of crystallized luminescent calcium molybdate film", J. Am. Ceram. Soc. 80 (1997) 765. https://doi.org/10.1111/j.1151-2916.1997.tb02895.x
  23. J.H. Ryu, J.-W. Yoon, C.S. Lim, W.-C. Oh and K.B. Shim, "Microwave-assisted synthesis of $CaMoO_4$ nano-powders by a citrate complex method and its photoluminescence property", J. Alloys and Compd. 390 (2005) 245. https://doi.org/10.1016/j.jallcom.2004.07.064
  24. L.V. Zhigilei, P.B.S. Kodali and B.J. Garrison, "A microscopic view of laser ablation", J. Phys. Chem. B 102 (1998) 2845. https://doi.org/10.1021/jp9733781
  25. A.A. Oraevsky and S.L. Jacques, "Mechanism of laser ablation for aqueous media irradiated under confined-stress conditions", J. Appl. Phys. 78(2) (1995) 1281. https://doi.org/10.1063/1.360370
  26. L.V. Zhigilei, "Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation", Appl. Phys. A 76 (2003) 339. https://doi.org/10.1007/s00339-002-1818-5
  27. T. Tixier, M.H. Butler and E.M. Terentjev, "Spontaneous size selection in cholesteric and nematic emulsions", Langmuir 22 (2006) 2365. https://doi.org/10.1021/la0531953
  28. R. Pecora (Ed.), Dynamic light scattering, application of photon correlation spectroscopy, Plenum Press, New York (1985).
  29. R. Zhai, H. Wang, H. Yan and M. Yoshimura, "Preparation of crystalline $CaWO_4$ thin films by chemical bath deposition", J. Cryst. Growth 289 (2006) 647. https://doi.org/10.1016/j.jcrysgro.2005.12.062
  30. L.B. Barbosa, D.R. Ardila, C. Cusatis and J.P. Andreeta, "Growth and characterization of crack-free scheelite calcium molybdate single crystal fiber", J. Cryst. Growth 235 (2002) 327. https://doi.org/10.1016/S0022-0248(01)01816-4
  31. Y. Zhang, N.A.W. Holzwarth and R.T. Williams, "Electronic band structures of the scheelite materials $CaMoO_4,\;CaWO_4,\;PbMoO_4,\;and\;PbWO_4$", Phys. Rev. B 57(20) (1998) 12738. https://doi.org/10.1103/PhysRevB.57.12738
  32. J. Tauc and A. Menth, "Magnetic susceptibility of amorphous semiconductors", J. Non-Cryst. Solids 8/9 (1972) 569.
  33. W. Van Loo, "Luminescence of lead molybdate and lead tungstate. I. Experimental", Phys. Status Solidi A 27 (1975) 565. https://doi.org/10.1002/pssa.2210270227
  34. B.K. Chandrasekhar and W.B. White, "Luminescence of single crystal $CaMoO_4$", Mat. Res. Bull. 25 (1990) 1513. https://doi.org/10.1016/0025-5408(90)90128-O
  35. D. Spassky, S. Ivanov, I. Kitaeva, V. Kolobanov, V. Mikhailin, L. Ivleva and I. Voronina, "Optical and luminescent properties of a series of molybdate single crystals of scheelite crystal structure", Phys. Status Solidi C 2 (2005) 65. https://doi.org/10.1002/pssc.200460112
  36. V.B. Mikhailik, H. Kraus, D. Wahl and M.S. Mykhaylyk, "Studies of electronic excitations in $MgMoO_4,\;CaMoO_4\;and\;CdMoO_4$ crystals using VUV synchrotron radiation", Phys. Status Solidi B 242 (2005) R17. https://doi.org/10.1002/pssb.200409087
  37. R. Grasser, A. Scharmann and K.-R. Strack, "On the intrinsic nature of the blue luminescence in $CaWO_4$", J. Lumin. 27 (1982) 263. https://doi.org/10.1016/0022-2313(82)90004-7