• Title/Summary/Keyword: fast search algorithm

Search Result 530, Processing Time 0.032 seconds

Fast Search Algorithm for Determining the Optimal Number of Clusters using Cluster Validity Index (클러스터 타당성 평가기준을 이용한 최적의 클러스터 수 결정을 위한 고속 탐색 알고리즘)

  • Lee, Sang-Wook
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.80-89
    • /
    • 2009
  • A fast and efficient search algorithm to determine an optimal number of clusters in clustering algorithms is presented. The method is based on cluster validity index which is a measure for clustering optimality. As the clustering procedure progresses and reaches an optimal cluster configuration, the cluster validity index is expected to be minimized or maximized. In this Paper, a fast non-exhaustive search method for finding the optimal number of clusters is designed and shown to work well in clustering. The proposed algorithm is implemented with the k-mean++ algorithm as underlying clustering techniques using CB and PBM as a cluster validity index. Experimental results show that the proposed method provides the computation time efficiency without loss of accuracy on several artificial and real-life data sets.

A Fast Block Matching Algorithm by using the Cross Pattern and Flat-Hexagonal Search Pattern (크로스 패턴과 납작한 육각 탐색패턴을 이용한 고속 블록 정합 알고리즘)

  • 남현우;김종경
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.12
    • /
    • pp.953-964
    • /
    • 2003
  • In the block matching algorithm, search patterns of different shapes or sizes and the distribution of motion vectors have a large impact on both the searching speed and the image quality. In this paper, we propose a new fast block matching algorithm using the cross pattern and the flat-hexagon search pattern. Our algorithm first finds the motion vectors that are close to the center of search window using the cross pattern, and then lastly finds the other motion vectors that are not close to the center of search window using the flat-hexagon search pattern. Through experiments, compared with the hexagon-based search algorithm(HEXBS), the proposed cross pattern and flat-hexagonal pattern search algorithm(CFHPS ) improves about 0.2-6.2% in terms of average number of search point per motion vector estimation and improves about 0.02-0.31dB in terms of PSNR(Peak Signal to Noise Ratio).

  • PDF

Fast Detection of Forgery Image using Discrete Cosine Transform Four Step Search Algorithm

  • Shin, Yong-Dal;Cho, Yong-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.527-534
    • /
    • 2019
  • Recently, Photo editing softwares such as digital cameras, Paintshop Pro, and Photoshop digital can create counterfeit images easily. Various techniques for detection of tamper images or forgery images have been proposed in the literature. A form of digital forgery is copy-move image forgery. Copy-move is one of the forgeries and is used wherever you need to cover a part of the image to add or remove information. Copy-move image forgery refers to copying a specific area of an image itself and pasting it into another area of the same image. The purpose of copy-move image forgery detection is to detect the same or very similar region image within the original image. In this paper, we proposed fast detection of forgery image using four step search based on discrete cosine transform and a four step search algorithm using discrete cosine transform (FSSDCT). The computational complexity of our algorithm reduced 34.23 % than conventional DCT three step search algorithm (DCTTSS).

Fast Motion Estimation Using Local Statistics of Neighboring Motion Vectors (인접 블록 움직임 벡터의 지역적 통계 특성을 이용한 고속 움직임 추정 기법)

  • Kim, Ki-Beom;Jeong, Chan-Young;Hong, Min-Cheol
    • Journal of Broadcast Engineering
    • /
    • v.13 no.1
    • /
    • pp.128-136
    • /
    • 2008
  • In this paper, we propose a variable step search fast motion estimation algorithm using local statistics of neighboring motion vectors. Using the degree of correlation between neighboring motion vectors, motion search range is adaptively adjusted to reduce unnecessary search points. Based on the adjusted search range, motion vector is obtained by variable search step. Experimental results show that the proposed algorithm has the capability to dramatically reduce the search points and computing cost for motion estimation, comparing to fast full spiral search motion estimation and other fast motion estimation.

Fast Motion Estimation Algorithm for H.264 Video Coding Standard (H.264 동영상 표준 부호화 방식을 위한 고속 움직임 추정 기법)

  • Yoon Sung-Hyun;Choi Kwon-Yul;Lee Seongsoo;Hong Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1091-1097
    • /
    • 2005
  • In this paper, we propose fast motion estimation algorithm. Local statistics of a motion vector is highly correlated to motion vectors of its neighboring blocks. According to the property, block-based motion search range is adaptively determined in order to reduce unnecessary search points. Based on the determined search range, motion vector is obtained by variable step search motion estimation. Experimental results show that comparing to Full search motion estimation, the motion searching points of proposed algorithm is reduced as much as $98\%$. Moreover, PSNR and Bit Rate are almost same to Full search method.

Fast Motion Estimation Algorithm via Minimum Error for Each Step (단계별 최소에러를 통한 고속 움직임 예측 알고리즘)

  • Kim, Jong Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1531-1536
    • /
    • 2016
  • In this paper, we propose a fast motion estimation algorithm which is important in performance of video encoding. Even though so many fast algorithms for motion estimation have been published due to its tremendous computational amount of for full search algorithm, efforts for reducing computations in motion estimation still remain. In the paper, we propose an algorithm that reduces unnecessary computations only, while keeping prediction quality the same as that of the full search. The proposed algorithm does not calculate block matching error for each candidate at once to find motion vectors but divides the calculation procedure into several steps and calculates partial sum of block errors. By doing that, we can estimate the minimum error point early and get the enhancement of calculation speed by reducing unnecessary computations. The proposed algorithm uses smaller computations than conventional fast search algorithms with the same prediction quality as full search.

Performance Analysis of PCM Cell Search Algorithm for Fast Cell Search in WCDMA Systems (WCDMA. 시스템에서 빠른 셀 탐색을 위한 극성 변조 셀 탐색 알고리즘의 성능 분석)

  • 배성오;임재성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8A
    • /
    • pp.598-606
    • /
    • 2003
  • In this paper, we analyze the performance of the PCM cell search algorithm proposed for fast cell search of WCDMA systems. In order to improve both performance and complexity of the cell search algorithm standardized for WCDMA systems the PCM scheme uses a group of the polarization codes produced by a Gold code generator. The PCM scheme only uses one synchronization channel since the polarization codes modulated on P-SCH can replace the RS codes of S-SCH. Thus, the PCM reduces the BS's transmission power since only one synchronization channel can be used, and it can also reduce the complexity of receiver as compared with the conventional one. In this paper, by defining a numerical model, we analyze the performance of the PCM cell search algorithm in terms of detection probability and mean acquisition time. Consequently, we could demonstrate that the PCM cell search algorithm is superior to the standard WCDMA cell search algorithm.

ENHANCED CROSS-DIAMOND SEARCH BASED FAST BLOCK MATCHING NOTION ESTIMATION ALGORITHM (고속 블록 정합 움직임 추정 기법 기반의 향상된 십자 다이아몬드 탐색)

  • Kim, Jung-Jun;Jeon, Gwang-Gil;Jeong, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.12 no.5
    • /
    • pp.503-515
    • /
    • 2007
  • A new fast motion estimation algorithm is presented in this paper. The algorithm, named Enhanced Cross-Diamond Search (ECDS), is based on the Diamond Search (DS) algorithm. The DS algorithm, even though faster than the most well-known algorithms, was found not to be very robust in terms of objective and subjective qualities for several sequences and the algorithm searches unnecessary candidate blocks. We propose a novel ECDS algorithm using a small cross search as the initial step, and large/small DS patterns as subsequent steps for fast block motion estimation. Experimental results show that the ECDS is much more robust, provides a faster searching speed, and smaller distortions than other popular fast block-matching algorithms.

A Fast Motion Estimation Algorithm with Motion Analysis (움직임 해석을 통한 고속 움직임 예측 알고리즘)

  • Jun, Young-Hyun;Yun, Jong-Ho;Cho, Hwa-Hyun;Choi, Myung-Ryul
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.339-342
    • /
    • 2005
  • We present an efficient block-based motion estimation algorithm with motion analysis. The motion analysis determines a size of search pattern and a maximum repeated count of search pattern. In case of large movement in large image, we reduce search points and the local minimum which caused by low performance. The proposed algorithm employs with searching step of 2. The first step determines an initial search point with neighbor block vector and a size of initial search pattern. The second step determines a size of search pattern and a maximum repeated count with motion analysis. We improve motion prediction accuracy while reducing required computational complexity compared to other fast block-based motion estimation algorithms.

  • PDF

Design of a Fast Multi-Reference Frame Integer Motion Estimator for H.264/AVC

  • Byun, Juwon;Kim, Jaeseok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.430-442
    • /
    • 2013
  • This paper presents a fast multi-reference frame integer motion estimator for H.264/AVC. The proposed system uses the previously proposed fast multi-reference frame algorithm. The previously proposed algorithm executes a full search area motion estimation in reference frames 0 and 1. After that, the search areas of motion estimation in reference frames 2, 3 and 4 are minimized by a linear relationship between the motion vector and the distances from the current frame to the reference frames. For hardware implementation, the modified algorithm optimizes the search area, reduces the overlapping search area and modifies a division equation. Because the search area is reduced, the amount of computation is reduced by 58.7%. In experimental results, the modified algorithm shows an increase of bit-rate in 0.36% when compared with the five reference frame standard. The pipeline structure and the memory controller are also adopted for real-time video encoding. The proposed system is implemented using 0.13 um CMOS technology, and the gate count is 1089K with 6.50 KB of internal SRAM. It can encode a Full HD video ($1920{\times}1080P@30Hz$) in real-time at a 135 MHz clock speed with 5 reference frames.