
http://dx.doi.org/10.5573/JSTS.2013.13.5.430 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.5, OCTOBER, 2013

Manuscript received Nov. 30, 2012; accepted May. 30, 2013
The authors are with the Department of Electrical and Electronic
Engineering, Yonsei University, Seoul 120-749, Korea.
E-mail : jaekim@yonsei.ac.kr

Design of a Fast Multi-Reference Frame Integer
Motion Estimator for H.264/AVC

Juwon Byun and Jaeseok Kim

Abstract—This paper presents a fast multi-reference
frame integer motion estimator for H.264/AVC. The
proposed system uses the previously proposed fast
multi-reference frame algorithm. The previously
proposed algorithm executes a full search area motion
estimation in reference frames 0 and 1. After that, the
search areas of motion estimation in reference frames
2, 3 and 4 are minimized by a linear relationship
between the motion vector and the distances from the
current frame to the reference frames. For hardware
implementation, the modified algorithm optimizes the
search area, reduces the overlapping search area and
modifies a division equation. Because the search area
is reduced, the amount of computation is reduced by
58.7%. In experimental results, the modified
algorithm shows an increase of bit-rate in 0.36%
when compared with the five reference frame
standard. The pipeline structure and the memory
controller are also adopted for real-time video
encoding. The proposed system is implemented using
0.13 um CMOS technology, and the gate count is
1089K with 6.50 KB of internal SRAM. It can encode
a Full HD video (1920x1080P@30Hz) in real-time at a
135 MHz clock speed with 5 reference frames.

Index Terms—Video coding, video codecs, motion
estimation, H.264/AVC

I. INTRODUCTION

H. 264/AVC is the latest video coding standard of the
ITU-T Video Coding Experts Group (VCEG) and the
ISO/IEC Moving Picture Experts Group (MPEG). This
standard provides much higher compression than earlier
standards such as MPEG-2 or MPEG-4. The higher
coding efficiency comes from several new features such
as the multi-reference frame, variable sub block size,
quarter-pixel accuracy motion vector, intra prediction,
integer transformation, adaptive in-loop deblocking filter
and enhanced entropy coding methods [1]. Although the
coding efficiency of H.264/AVC is much higher than that
of previous standards, these new features increase the
computational complexity and make it difficult to
implement in mobile devices [2-5].

Multi-reference frame motion estimation is one of the
new features in H.264/AVC. It increases the performance
of the video encoder by using up to five reference frames,
but this feature greatly increases the computation
quantity. The number of computations is linear relative to
the number of reference frames, so H.264/AVC, which
uses multi-reference frames, takes more time than earlier
standards such as MPEG-2 or MPEG-4. In particular, the
integer pixel motion estimation module is one of the
most time-consuming blocks, consuming 74.25% of the
execution time in the H.264/AVC encoder [6]. Because
the number of computations required for multi-reference
frame motion estimation is very large, implementation of
a real-time multi-reference integer motion estimation
encoder is difficult, and most of the previous integer
motion estimators used only one reference frame or two
reference frames [7-11].

In this paper we design a fast multi-reference frame

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.5, OCTOBER, 2013 431

integer motion estimator for H.264/AVC. For this work,
we use and modify the fast multi reference frame motion
estimation algorithm that was proposed in our in
previous work [12]. The previously proposed algorithm
reduces the search area by using a linear feature of object
motion and does not use early termination by threshold
value. This feature gives us a fixed processing time
schedule and a small sized hardware area. It makes
hardware implementation easy.

The rest of this paper is organized as follows: Section
2 introduce the multi-reference frame motion estimation
and the previously proposed algorithm. In Section 3, we
modify the previously proposed algorithm for hardware
implementation. Section 4 provides the experimental
results. In Section 5, we design the fast multi reference
integer motion estimator for H.264/AVC. Section 6
provides the implementation results and a comparison of
the proposed system with previous systems. Finally, we
conclude this paper in Section 7.

II. MULTI-REFERENCE FRAME MOTION

ESTIMATION AND PREVIOUS FAST

ALGORITHMS

1. The Multi-Reference Frame Motion Estimation

In the latest video standard, H.264/AVC, several

features are added to the motion estimation module and
they make the amount of computation required for
motion estimation huge. In particular, multi-reference
frame motion estimation, which uses up to five reference
frames, provides a highly efficient coding rate, but
requires a great deal of computations [13, 14]. To
investigate the number of computation required for
multi-reference frame motion estimation, we measured
the motion estimation time and bit-rate. Fig. 1 shows the
relationship between the bit-rate and processing time of
motion estimation. The x-axis shows the number of
reference frames, the dashed line shows the motion
estimation time and the solid line shows the percentage
increment of the bit-rate. This graph shows that the
amount of computation for multi-reference frame motion
estimation has a linear relationship with the number of
reference frames. For this reason, the complexity of
computations for multi-reference frame motion
estimation that uses five reference frames is five times

more than that of single reference frame motion
estimation. The motion estimation computation time is
very large, and the bit-rate is low in motion estimation
that uses five reference frames. Because of the
computation complexity, the previous integer motion
estimators use only one reference frame or two reference
frames. To implement the multi reference frame motion
estimator, the fast multi reference frame motion
estimation algorithm is required and such fast multi-
reference algorithms were developed.

2. Fast Multi-frame Motion Estimation Algorithm with
Adaptive Search Strategies (FMASS) [16]

The algorithm of FMASS [16] uses two features of

multi-reference frame motion estimation. The first
feature is that the probability of selecting ref3 and ref4 is
lower than 3%. The second feature is that ref3 and ref4
are more likely to be selected under conditions of
vibration or smooth moving. To use these features, first,
FMASS executes motion estimation in ref0, ref1, and ref2.
Then, if the values of the difference between the
reference frame 0 motion vector and other reference
frame motion vectors is smaller than certain threshold
values and the matching cost of ref0 is smaller than that
of the other reference frames, the motion estimation of
ref3 and ref4 will be skipped.

FMASS uses a feature such that ref3 and ref4 will be
more likely to be selected under conditions of vibration
or smooth moving, but it uses threshold values. It does
not provide any gain regarding implementation on
hardware.

Fig. 1. Relationship between the number of reference frames,
bit-rate and ME time.

432 JUWON BYUN et al : DESIGN OF A FAST MULTI-REFERENCE FRAME INTEGER MOTION ESTIMATOR FOR H.264/AVC

3. Adaptive and Fast Multi-frame Selection Algorithm
(AFMFSA) [17]

AFMFSA [17] consists of three skip methods. The

first method uses a relationship between the current
block and its neighboring blocks, which are located
above and to the left side of the current block. If the
current block is not located at object boundaries and its
neighboring blocks have the same optimal reference
frame, refn, its ultimate reference frame has a very large
probability (equal to 95%) of being refn. The second
method uses the magnitudes of the ref0 and ref1 motion
vectors. If the magnitudes of the ref0 and ref1 motion
vectors are very small or large, the motion estimation in
ref2, ref3, and ref4 can be skipped. The third method uses
the Sum of Absolute Difference (SAD) value of the
reference frames. If the magnitudes of the ref0 and ref1
motion vectors have suitable sizes, the motion estimation
in ref2 is executed. After the execution of a motion
estimation in ref2, AFMFSA classifies the current block
into four types by using the SADs of ref0, ref1, and ref2.
If the SAD of ref0 has a minimum value and that of ref2
has a maximum value, the motion estimation of ref3 and
ref4 can be skipped. If the SAD of ref1 has a maximum
value, the SAD of ref3 determines an execution of motion
estimation in ref4. If the SAD of ref0 has a maximum
value and that of ref2 has a minimum value, the motion
estimation of ref3 and ref4 is executed.

AFMFSA determines on the execution of motion
estimation for each reference frame at every reference
frame. It gives non-fixed timing, and data dependency
appears. These make it difficult to implement a pipeline
structure or a parallel structure.

4. Fast Reference Frame Selection Algorithm (FRFSA)
[18]

FRFSA [18] uses a temporal correlation. It classifies

the reference regions into four types using the reference
frame index of the anchor block. The anchor block is the
macro block that has the same position in the previous
encoded frame. Region0 represents the entire reference
index of the anchor blocks that are ref0. In the same
manner, Region1 consists of ref0 and ref1, and Region2
(or Region3) is composed of ref0, ref1 and ref2 (ref0, ref1,
ref2, ref3 and ref4).

To implement the motion estimator hardware for
H.264/AVC, FRFSA requires additional memory that saves
the reference frame indices of the previously encoded
frame. It shows increases in hardware size and cost.

5. The Previously Proposed Algorithm [12]

As we explained in the previous section, previous fast

multi-reference frame motion estimation algorithms,
such as FMASS [16], AFMFSA [17], and FRFSA [18]
have problems in that they use threshold values, have a
large data dependency, and require the additional
memory. It makes hardware implementation difficult and
provides no gains for hardware implementation. To
resolve these problems, we proposed a new fast multi-
reference motion estimation algorithm. Our fast multi-
reference algorithm uses a linear relationship between the
motion vector and the distances from the current frame to
the reference frames. To resolve the estimated motion
vector, we find the center positions of the reduced search
areas by using the motion vector of the previous
reference frame and the Picture Order Counts (POC) of
each frame. The center positions of the reduced search
areas are solved for by using Eq. (1).

 ,
n curr

n i i curr
i curr

POC POCCP MV P
POC POC

-
= ´ +

-
 (1)

where i=0 or 1, n = 2 or 3 or 4

iMV is the motion vector in refi. nPOC and
currPOC are the POC of reference frame n (refn) and the

POC of the current frame respectively. ,n iCP is the
center position in refn by iMV . currP is the current
position in the current picture. The proposed algorithm is
described as follows:

1. Process motion estimation in ref0.
2. Process motion estimation in ref1.
3. Solve the center positions of the search area in ref2,

ref3 and ref4.
4. Set the two center positions of the reduced search

areas in ref2, ref3 and ref4.
5. Process motion estimation in ref2 reduced search

areas.
6. Process motion estimation in ref3 reduced search

areas.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.5, OCTOBER, 2013 433

7. Process motion estimation in ref4 reduced search
areas.

Fig. 2 shows the search area of the previously

proposed algorithm. In ref0 and ref1, the search area is the
full-size search area. In ref2, ref3, and ref4, the search area
of each frame consists of two reduced search areas and
each reduced search area size is 1/16 of the full search
area. One of the two reduced search areas is resolved by
the motion vector in ref0. The other is resolved by the
motion vector in ref1. Consequentially, the previously
proposed algorithm uses 2.375 reference frames, and the
number of computations is reduced by 52.5% as
compared to the standard algorithm, which uses five
reference frames and does not use a threshold value. It
provides fixed timing for hardware implementation and
gives large gains for hardware implementation, such as
easy time scheduling and reduced calculations. In
addition, there is no data dependency among ref2, ref3,
and ref4. Therefore, an implementation of a pipeline
structure or parallel structure is possible.

III. ALGORITHM MODIFICATION

To design the hardware of the previously proposed fast
multi-reference frame motion estimation algorithm, some
modification of the previously proposed algorithm is
required. The first modification point is the division of
Eq. (1). This equation is solving for the center position of
the reduced search areas in ref2, ref3, and ref4. The
second modification point is the optimization of the
reduced search area size. Because the full search area
size is increased to 64x64, the optimization of the

reduced search area size is required. The third
modification point is the overlap of the reduced search
areas in ref2, ref3, and ref4. The overlap of the search
areas creates overhead in terms of computation and
memory bandwidth. We modify the previously proposed
algorithm to solve these three problems.

1. The Modification of the Central Point Solving
Equation

The previously proposed fast multi-reference frame

motion estimation algorithm uses Eq. (1) to solve for the
reduced search areas in ref2, ref3, and ref4. Eq. (1) has the
division operation. This makes hardware implementation
difficult. For this reason, the modification of Eq. (1) is
required.

H.264/AVC standard uses the temporal direct mode.
The temporal direct mode predicts the reference frame
index and motion vector by using the motion information
of the anchor block, which is the same position block as
in the previously encoded frame. One reference frame of
the current block is the same as that of the anchor block,
and another reference frame is the anchor frame. Motion
vectors of the current block are solved for by using the
motion vectors and time distances of each frame. Fig. 3
shows the temporal direct mode in H.264/AVC standard.
MVL0 is the L0 motion vector of the current block, and
MVL1 is the L1 motion vector of the current block. MVCol
is the motion vector of the anchor block. tb is the
distance from the reference frame to the current frame. td
is the distance from the reference frame to the anchor
frame. MVL0 and MVL1 are solved for by using MVCol, tb,
td, and Eq. (2).

Fig. 2. Search area of the proposed algorithm.

434 JUWON BYUN et al : DESIGN OF A FAST MULTI-REFERENCE FRAME INTEGER MOTION ESTIMATOR FOR H.264/AVC

0

1 0

L Col

L L Col

tb
MV MV

td
MV MV MV

= ´

= -

 (2)

We can show that Eq. (2) is very similar to Eq. (1).

H.264/AVC standard modifies Eq. (2) in order to create
Eq. (3) for solving the problems of the division operation.
POCAnchor is the POC of the anchor frame, and POCref is
that of the reference frame. The division operation of Eq.
(3) can be designed by using a reasonable amount of
Read Only Memory (ROM), multipliers, and adders. Eq.
(4) is a version of Eq. (1) that is modified by using the
same method. It can also be implemented by using ROM,
multipliers, and adders.

0

(128,127,)
(128,127,)

(16384 (/ 2)) /

(1024,1023, (32) 6)
(128) 8

curr ref

Anchor ref

L Col

tb Clip POC POC
td Clip POC POC
tx td td
DistScaleFactor

Clip tb tx
MV DistScaleFactor MV

= - -
= - -
= +

= - ´ + >>
= ´ + >>

 (3)

,

(128,127,)
(128,127,)

(16384 (/ 2)) /

(1024,1023, (32) 6)
(128) 8

curr n

i n

n i i curr

tb Clip POC POC
td Clip POC POC
tx td td
DistScaleFactor

Clip tb tx
CP DistScaleFactor MV P

= - -
= - -
= +

= - ´ + >>
= ´ + >> +

 (4)
2. The Optimization of the Reduced Search Area Sizes

In previous work [12], the size of the full search area

was 32x32. In this work, the full search area size is
increased to 64x64 for higher performance of the
designed motion estimator. Therefore, an adjustment of
the reduced search area size is required. To find the
optimum size of reduced search areas, the performance

of 8x8 reduced search areas is compared with that of
16x16 reduced search areas. Table 1 displays the
difference values of PSNR and bit-rate of 8x8 reduced
search areas when compared with those of 16x16
reduced search areas. The quantization parameter is 25.
Simulation results show that the PSNR drop is only
0.006 dB and bitrate is reduced to 0.04% rather. In other
words, the performance drop is negligible when the size
of reduced search areas is decreased. For this reason, the
reduced search areas are decreased to 1/64.

3. The Removal of Overlap Operations

The previously proposed fast multi-reference frame

motion estimation algorithm decreases the number of
computations by reducing the search areas in ref2, ref3,
and ref4. The search areas of ref0 and ref1 are a full-sized
search areas. In ref2, ref3, and ref4, the search area of each
frame consists of two reduced search areas, and each
reduced search area size is 1/64 of the full search area.
Because the number of search areas is two in ref2, ref3,
and ref4, search areas overlap in such cases. Table 2
shows the proportion that CPn,0 is the same as CPn,1.

Simulation results show that the same proportion CPn,0
as CPn,1 in ref2, ref3 and ref4 is more than 38%. The result

Table 1. The difference values of PSNR and bit-rate of 8x8
reduced search areas compared with those of 16x16 reduced
search areas

Sequence △PSNR(dB) △Bit (%)

Q
C

IF

Akiyo
Carphone

Coastguard
Container
Foreman
Mobile

Mother-daughter

-0.001
-0.038
-0.011
0.007
-0.041
-0.007
-0.002

0.40%
0.14%
-0.32%
-0.20%
0.41%
-0.46%
-0.21%

C
IF

Coastguard
Container
Foreman
Mobile

Mother-daughter
News
Silent

-0.007
0.001
-0.007
0.000
-0.011
0.003
-0.003

0.15%
0.10%
0.81%
0.10%
0.07%
0.20%
0.13%

4C
IF

 City
Crew

Harbour
Ice

-0.003
-0.002
-0.001
-0.004

0.21%
-0.18%
0.08%
-0.15%

72
0P

 Mobcal
Parkrun
Shields

-0.002
0.000
0.000

-0.19%
-0.08%
-0.12%

Average -0.006 -0.04%

Fig. 3. The temporal direct mode in H.264/AVC standard.

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.5, OCTOBER, 2013 435

indicates that overlapped search areas must not be
neglected. Overlapped search areas cause unnecessary
increases of motion estimation computation. It increases
the power consumption of motion estimation system
large. The power consumption is very important to
design a system for mobile devices. For this reason,
although the hardware time scheduling becomes more
complex, we modify the proposed fast multi-reference
frame motion estimation algorithm in order to reduce the
number of computation by eliminating overlapping
search areas.

Fig. 4 shows the overlapping search area and reduced
search areas in ref2, ref3, and ref4 by using MV0 and MV1.
refn,i is the reduced search area of refn by MVi. If CPn,0 is
the same as CPn,1, the motion estimation of the search
area by MV1 is skipped. This decreases the use of
unnecessary memory bandwidth. If CPn,0 is not the same
as CPn,1 and if the absolute lengths of both dx and dy are
shorter than R, the motion estimation of these search
points is skipped in order to remove the overlapping
computation. The difference of computation quantity
between maximum and minimum is much less than that
of previous fast algorithms. Because of this reason, the
modified algorithm has more advantages than previous
fast algorithms when designing a hardware architecture.
The proposed modified multi-reference frame motion
estimation algorithm is described as follows:

1. Process motion estimation in ref0 and ref1.
2. Solve the center positions of the search area in ref2,

ref3, and ref4.
3. Set the two center positions of the reduced search

areas in ref2, ref3, and ref4.
4. Process motion estimation at all search points of

ref2,0.
5. If CP2,0 is the same as CP2,1, the motion estimation

of ref2,1 is skipped. Otherwise, process motion
estimation at the search points of ref2,1 where dx and
dy are longer than R.

6. Process motion estimation at all search points of
ref3,0.

7. If CP3,0 is the same as CP3,1, the motion estimation
of ref3,1 is skipped. Otherwise, process the motion
estimation at search points of ref3,1 where dx and dy
are longer than R.

8. Process motion estimation at all search points of
ref4,0.

9. If CP4,0 is the same as CP4,1, the motion estimation
of ref4,1 is skipped. Otherwise, the process motion
estimation at search points of ref4,1 where dx and dy
are longer than R.

IV. SIMULATION RESULTS

In Section 3, we modified the previously proposed fast
multi-reference motion estimation algorithm. To
compare the modified algorithm with the previously
proposed algorithm and the previous fast algorithms, we
simulate some sequences that have various sizes. We use
JM v9.6 reference software. The quantization parameter

Fig. 4. The overlapped search area in ref2, ref3 and ref4.

Table 2. the same proportion CPn,0 as CPn,1

Size Sequence The Same Portion of
CPn,0 as CPn,1

QCIF

akiyo
carphone

coastguard
container
foreman
mobile

mother-daughter

87.14 %
39.29 %
11.84 %
85.88 %
23.72 %
27.59 %
71.11 %

CIF

coastguard
container
foreman
mobile

mother-daughter
news
silent

3.71 %
79.57 %
20.38 %
11.18 %
66.00 %
78.72 %
71.75 %

4CIF

city
crew

harbour
ice

3.66 %
15.93 %
5.05 %
68.01 %

720p
mobcal
parkrun
shields

30.87 %
1.22 %
9.75 %

Average 38.68 %

436 JUWON BYUN et al : DESIGN OF A FAST MULTI-REFERENCE FRAME INTEGER MOTION ESTIMATOR FOR H.264/AVC

is 30, and the size of the search area is 64x64. With these
setting values, the search area of ref0 and ref1 is one
64x64 square, and that of ref2, ref3 and ref4 is two 8x8
squares. The QCIF (176x144)-sized sample sequences
are ‘Akiyo,’ ‘Carphone,’ ‘Coastguard,’ ‘Container,’
‘Foreman,’ ‘Mobile,’ and ‘Mother-daughter.’ The CIF
(352x288)-sized sample sequences are ‘Coastguard,’
‘Container,’ ‘Foreman,’ ‘Mobile,’ ‘Mother-daughter,’
‘News,’ and ‘Silent’. The 4CIF (704x576)-sized sample
sequences are ‘City,’ ‘Crew,’ ‘Harbor,’ and ‘Ice.’ The
720p (1280x720)-sized sample sequences are 'Mobcal,'
'Parkrun,' and 'Shields.' The number of encoded frames is
99 and CABAC is used for entropy coding. Table 3
shows the result of the simulation when compared with
the modified algorithm, previous fast algorithms, and the
standard, which uses five reference frames. △PSNR and

△Bit refer to the difference values of PSNR and bit-rate
when compared with the standard, which uses five
reference frames. According to these results, the
maximum PSNR drop of FMASS is 0.094 dB, and the
maximum bit-rate increment is 7.92%. The number of
reference frames is reduced by a maximum of 1.986, but
reduced only by 1.475 in the extreme case. The

maximum PSNR drop of AFMFSA is 0.182dB, and the
maximum bit-rate increment is 13.16%. In particular, it
has low performance in the ‘Akiyo’ QCIF sequence and
the 'Mobcal' 720p sequence. AFMFSA uses 1.211
reference frames in the 'Parkrun' 720p sequence and uses
2.938 reference frames in the 'Foreman' QCIF sequence.
The maximum bit-rate increment of FRFSA is 20.01%
and the maximum PSNR drop is 0.248 dB. In particular,
It has low performance in the ‘Mobcal’ 720P sequence.
The bit-rate increment of the modified algorithm is less
than 2% in every sequence, and the PSNR drop is a
maximum of 0.046 dB which is much smaller than those
of the previous fast algorithms. Fig. 5 compares the rate-
distortion curves of various video sequences. The 720p-
size sample sequences are ‘Mobcal’ and ‘Shields,’ the
CIF-size sample sequence is ‘Mobile,’ and the QCIF-size
sample sequence is ‘Container’. The performance of the
modified algorithm is much better than previous fast
algorithms. To compare the various quantization
parameters, we use the rate-distortion curves,
Bjontegaard Delta PSNR (BDPSNR) and Bjontegaard
Delta Bit-rate (BD-bit-rate) [19]. BDPSNR and BD-bit-
rate display performance by combining changes of PSNR

Table 3. Comparison of the modified algorithm with the previously proposed algorithm m and previous fast algorithms
FMASS [16] AFMFSA [17] FRFSA [18] The Modified Algorithm

 # Ref.
Frame

△	
PSNR
(dB)

△Bit
(%)

Ref.
Frame

△	
PSNR
(dB)

△Bit
(%)

Ref.
Frame

△	
PSNR
(dB)

△Bit
(%)

Ref.
Frame

△	
PSNR
(dB)

△Bit
(%)

Q
C

IF

Akiyo
Carphone

Coastguard
Container
Foreman
Mobile

Mother-daughter

3.014
3.223
3.181
3.017
3.224
3.121
3.048

-0.091
-0.054
0.006
-0.058
-0.006
-0.072
-0.022

1.06%
0.72%
-1.39%
1.87%
0.68%
-1.24%
0.06%

1.306
2.600
2.347
1.786
2.938
2.510
1.414

-0.133
-0.087
-0.031
-0.083
-0.021
-0.112
-0.060

3.79%
2.23%
-0.50%
2.90%
1.27%
1.66%
1.67%

1.002
1.300
1.040
1.356
1.030
3.835
1.095

-0.133
-0.248
-0.066
-0.059
-0.215
-0.033
-0.066

3.72%
5.24%
-1.12%
3.03%
2.29%
-0.79%
2.24%

2.050
2.062
2.066
2.050
2.065
2.062
2.053

-0.046
0.001
-0.018
-0.009
0.042
-0.030
-0.055

0.13%
0.20%
-0.72%
0.07%
1.97%
-0.36%
0.37%

C
IF

Coastguard
Container
Foreman
Mobile

Mother-daughter
News
Silent

3.329
3.032
3.387
3.207
3.080
3.067
3.133

0.005
-0.015
-0.027
-0.051
-0.022
0.009
-0.019

-1.05%
0.65%
0.55%
0.46%
0.59%
0.14%
0.60%

2.125
1.929
2.234
2.314
1.311
1.311
1.381

-0.022
-0.021
-0.061
-0.138
-0.071
-0.029
-0.058

0.12%
0.71%
1.47%
3.71%
2.30%
0.81%
3.17%

1.097
1.319
1.086
2.748
1.063
1.040
1.040

-0.044
-0.018
-0.177
-0.088
-0.063
-0.040
-0.077

-0.07%
0.86%
2.96%
1.11%
2.81%
0.89%
3.96%

2.076
2.051
2.071
2.066
2.055
2.052
2.056

-0.018
-0.001
-0.018
0.005
0.002
-0.005
-0.020

-0.01%
0.29%
1.73%
0.18%
1.34%
-0.01%
1.60%

4C
IF

 City
Crew

Harbour
Ice

3.442
3.525
3.500
3.261

0.003
-0.006
-0.009
-0.015

0.21%
0.05%
-0.17%
-0.27%

1.462
1.946
2.041
1.418

-0.041
-0.034
-0.048
-0.067

2.11%
1.01%
1.51%
1.53%

1.024
1.055
1.324
1.040

-0.049
-0.047
-0.060
-0.071

2.01%
2.43%
1.11%
1.55%

2.080
2.077
2.080
2.060

-0.011
-0.011
-0.009
-0.024

1.09%
0.96%
0.49%
0.95%

72
0P

 Mobcal
Parkrun
Shields

3.133
3.279
3.381

-0.094
-0.006
-0.016

7.92%
-0.15%
0.55%

1.652
1.211
1.281

-0.182
-0.037
-0.078

13.16%
1.15%
3.63%

1.659
1.096
1.045

-0.242
-0.044
-0.085

20.01%
1.29%
3.47%

2.062
2.076
2.075

-0.002
-0.001
0.000

0.03%
-0.09%
-0.04%

Total Average 3.218
 -35.6% -0.027 0.56% 1.834

-63.3% -0.067 2.35% 1.307
-73.1% -0.092 2.81% 2.064

-58.7% -0.011 0.48%

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.5, OCTOBER, 2013 437

and bit-rate. We simulate using the same sample
sequences in order to solve for BDPSNR and BD-bit-rate.
The quantization parameter values are changed to 20, 25,
30, 35, 40, 45, and 50. Other simulation environments
are the same as previously described. Table 4 and 5
represent the difference values of BDPSNR and BD-bit-
rate when compared with the standard, which uses five
reference frames. The results show that the modified
algorithm always has a better performance than the
previous algorithms, such as FMASS, AFMFSA, and
FRFSA. In particular, the BDPSNR of the modified
algorithm is always less than 0.035 dB when compared
with the standard. This means that the performance of the
modified algorithm is almost the same as that of the
standard.

V. ARCHITECTURE DESIGN

We designed an architecture that uses the modified
fast multi-reference frame motion estimation algorithm
for the H.264/AVC integer motion estimation system. As
shown in the results of Section 3 above, we modified the
previously proposed algorithm to design a hardware
system.

1. Previous Systems

The Huang’s system [9] uses five reference frames,

but the Chen’s system [8], the Youn’s system [10] and
the Kao’s system [11] use only one or two reference
frames and require an additional control to use the
modified algorithm. The Huang’s system uses only
16x16 or 8x8 block sizes. The Chen’s system uses a four
step search algorithm. The Youn’s system uses down-
sampling and pixel-truncation, which reduce the
complexity of hardware. However, these cause a large
performance drop. To compare the modified algorithm
with the previous systems, we make software simulators
of the previous systems. All simulators are based on JM

20

25

30

35

40

45

 - 5,000.00 10,000.00 15,000.00 20,000.00 25,000.00 30,000.00

PS
N

R
(d

B
)

Bitrate(kbps)

Mobcal, 720P

Standard

FMASS [16]

AFMFSA [17]

FRFSA [18]

The Modified

20

25

30

35

40

45

 - 5,000.00 10,000.00 15,000.00 20,000.00 25,000.00 30,000.00

PS
N

R
(d

B
)

Bitrate(kbps)

Shields, 720P

Standard

FMASS [16]

AFMFSA [17]

FRFSA [18]

The Modified

20

25

30

35

40

45

 - 500.00 1,000.00 1,500.00 2,000.00 2,500.00 3,000.00 3,500.00 4,000.00 4,500.00

PS
N

R
(d

B
)

Bitrate(kbps)

Mobile, CIF

Standard

FMASS [16]

AFMFSA [17]

FRFSA [18]

The Modified

20

25

30

35

40

45

 - 20.00 40.00 60.00 80.00 100.00 120.00 140.00

PS
N

R
(d

B
)

Bitrate(kbps)

Container, QCIF

Standard

FMASS [16]

AFMFSA [17]

FRFSA [18]

The Modified

Fig. 5. Rate-distortion curve comparisons.

Table 4. Result of BDPSNR (dB)

QP
△FMASS

[16]
△AFMFSA [17]

△FRFSA
[18]

The Modified
Algorithm

20 -0.009 -0.097 -0.110 -0.015
25 -0.043 -0.146 -0.184 -0.024
30 -0.055 -0.185 -0.232 -0.035
35 -0.027 -0.138 -0.188 -0.023
40 -0.012 -0.050 -0.082 -0.024
45 -0.018 -0.008 -0.014 -0.002
50 -0.002 -0.025 -0.032 -0.004

Avg. -0.024 -0.103 -0.120 -0.018

Table 5. Result of BD-Bit-rate

QP
△FMASS

[16]
△AFMFSA [17]

△FRFSA
[18]

The Modified
Algorithm

20 0.17% 1.93% 2.19% 0.30%
25 0.86% 2.93% 3.69% 0.48%
30 1.10% 3.70% 4.64% 0.70%
35 0.55% 2.76% 3.76% 0.47%
40 0.24% 1.01% 1.64% 0.47%
45 0.37% 0.16% 0.27% 0.04%
50 0.04% 0.50% 0.64% 0.08%

Avg. 0.48% 1.86% 2.40% 0.36%

438 JUWON BYUN et al : DESIGN OF A FAST MULTI-REFERENCE FRAME INTEGER MOTION ESTIMATOR FOR H.264/AVC

v9.6 reference software. Table 6 and 7 represent the
difference values of BDPSNR and BD-bit-rate when
compared with the standard, which uses five reference
frames and the 64x64 search area. The EX-Youn’s
system is the extension version of the Youn’s system
which uses 2 reference frames. Simulation environments
are the same as previously described. The results show
that the proposed system, which uses the modified
algorithm, usually has a better performance than the
other systems.

2. The Overall Architecture

Fig. 6 shows our overall architecture for the proposed

system. Our proposed fast algorithm processes a full
search in all reference frames. The search area size of
ref0 and ref1 is full size, and that of ref2, ref3 and ref4 is
reduced size. For Full HD (1920x1080P) video encoding,
our architecture consists of search area memory, a
current macro block memory, 16 processing units (PU), a
SAD summation block, a comparison block, and a center

point generator. The current macro block memory saves
the current macro block pixels, the size of which is 256
(16x16) bytes. Because the search area of the proposed
system is 64x64, the size of one line memory is 79 bytes
and the number of line memories is 79.

3. The Memory Read Controller

To minimize the time to read the memory, we

proposed the processing area which has a shape of
vertically long rectangular. The processing area is the
region of search area to be calculated immediately. For
reducing external memory bandwidth, the motion
estimation of the two reduced search areas is performed
at the same time in ref2, ref3 and ref4. Fig. 7 shows the
scan order of search area memories. The scan direction
of the reduced search area is only (a), but that of the full
search area can be (a), (b) and (c). If the processing area
is horizontally long rectangular same as most cases, the
size of the processing area is 31x16. In this case, each
line memory output has to be only one byte at one clock
cycle when the scan order is the direction (a) or (c) but
the last search area line memory output has to be 31

Fig. 6. The overall architecture of the proposed
system.

Search Area
(79x79)

(ref0, ref1)

Vertically
Long

Processing
Area

(16x31)

Horizontally Long
Processing Area

(31x16)

Scan order

(b)

(c)

Processing
Area 1
(16x23)

Processing
Area 2
(16x23)

Search Area
(23x23)

(ref2,0, ref3,0, ref4,0)

Search Area
(23x23)

(ref2,1, ref3,1, ref4,1)

(a)

(a)(a)

Fig. 7. The scan order of search area memories.

Table 6. Result of the BDPSNR (dB)

QP
△	

Chen’s
[9]	 △	

Huang’s
[9]

△	Youn’s	[10] △EX-	Youn’s	[10]	 △	
Kao’s
[11]

△
Proposed

20 -1.026 -0.162 -0.851 -0.168 -0.167 -0.015

25 -1.163 -0.146 -1.004 -0.233 -0.229 -0.024

30 -0.956 -0.092 -0.862 -0.220 -0.220 -0.035

35 -0.624 -0.020 -0.574 -0.107 -0.118 -0.023

40 -0.345 -0.010 -0.330 -0.042 -0.041 -0.024

45 -0.168 0.022 -0.145 -0.052 -0.031 -0.002

50 -0.029 0.010 -0.035 0.075 -0.081 -0.004

Avg. -0.616 -0.057 -0.543 -0.107 -0.127 -0.018

Table 7. Result of BD-Bit-rate

QP
△	

Chen’s
[9]	 △	

Huang’s
[9]

△	Youn’s	[10] △EX-	Youn’s	[10]	 △	
Kao’s
[11]

△
Proposed

20 20.52% 3.24% 17.02% 3.36% 3.34% 0.30%

25 23.27% 2.91% 20.08% 4.66% 4.59% 0.48%

30 19.12% 1.83% 17.25% 4.41% 4.40% 0.70%

35 12.47% 0.41% 11.48% 2.14% 2.36% 0.47%

40 6.91% 0.19% 6.61% 0.85% 0.82% 0.47%

45 3.37% -0.44% 2.89% 1.04% 0.62% 0.04%

50 0.57% -0.19% 0.69% -1.50% 1.62% 0.08%

Avg. 12.32% 1.14% 10.86% 2.14% 2.53% 0.36%

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.5, OCTOBER, 2013 439

bytes at one clock cycle when scan order is the direction
(b). The almost CMOS technology does not supports that
the bit-width of the SRAM is 31 bytes. But our system
uses the vertically long rectangular read area. It makes
the line memory output to be only 1 byte when the scan
order is the direction (a) or (c), too. Additionally, the last
search area line memory output is only 16 bytes at one
clock cycle when scan order is the direction (b).

4. Processing Units (PU)

The PU calculates the 4x4 unit SAD values of the

16x16 macro block. One PU calculates 16 4x4 unit SAD
values between the current block pixels and the reference
block pixels. For real-time full HD video encoding, we
use 16 PU in the proposed integer motion estimation
system.

5. SAD Summation Blocks and the Comparison Block

The SAD summation blocks calculate the SAD values

of each mode by using 4x4 unit SAD values, which are
calculated in the PU. The inputs of one SAD summation
block are 16 4x4 SAD values, and its outputs are 41 SAD
values for the 7 block size in H.264/AVC: one 16x16,
two 16x8, two 8x16, four 8x8, eight 8x4, eight 4x8, and
sixteen 4x4. For real-time full HD video encoding, we
use 16 SAD summation blocks in the proposed integer
motion estimation system.

The comparison block calculates the cost value of each
mode and determines the final mode and determines the
final mode, which has a minimum cost value. The
comparison block consists of 41 cost calculators and 41
comparison units.

6. The Center Point Generator

To design the center point generator, we modify Eq.

(1) in Section 2. The modified Eq. (4) can be
implemented by using ROM, several multipliers, and
adders. Additionally, because Eq. (4) is similar to Eq. (3),
the proposed reduced search area center position
generator can be shared with the temporal direct mode
predictor. Fig. 8 is the proposed search area center
position generator. It consists of two multipliers, three
adders, and ROM that has 128 bit-depth and 15 bit-width.

It is designed to solve for the motion vector in the
temporal direct mode.

7. The Pipeline Process

For the pipeline process, the proposed system is

divided into six stages, which are memory reading, PU,
SAD summation 1, SAD summation 2, solving cost 1
and solving cost 2. All stages are designed to use a one
clock cycle. The CU uses two clock cycles when the
calculations of the all search area are finished. Fig. 9
shows the pipeline process of the proposed system. It
requires 263 clock cycles to process motion estimation of
macro block in one reference frame. Because the
maximum number of the proposed algorithm’s reference
frames is 2.0938, motion estimation with the modified
algorithm uses 550 clock cycles. The minimum required
clock of Full HD (1920x1080P@30Hz) video encoding
is 135 MHz.

VI. SYNTHESIS RESULTS

The proposed system is implemented in Verilog HDL
and synthesized by using 0.13 um CMOS technology.
Table 8 contains the synthesis results of the proposed
system. The gate count is 1,089K with 6,497 bytes of
SRAM. The proposed system uses five reference frames.
The search area of ref0 and ref1 is 64x64. In ref2, ref3, and
ref4, the search area of each frame consists of two
reduced search areas, and each reduced search area size
is 8x8. The search algorithm in each search area is a full
search algorithm. The operation frequency is 135 MHz
when encoding a Full-HD (1920x1080p@30Hz) sized
video. Table 9 contains the comparison of the proposed
system with previous integer motion estimation systems.
The performance of the Youn’s system which uses 5
reference frames is almost same with that of the standard
which uses 5 reference frames. However, the controller

Fig. 8. The center point generator.

440 JUWON BYUN et al : DESIGN OF A FAST MULTI-REFERENCE FRAME INTEGER MOTION ESTIMATOR FOR H.264/AVC

part is only hardware resource which can be shared when
extend reference frames to 5 without increasing the
operation clock in design of motion estimator. Therefore,

the gate count of the Youn’s system which uses 5
reference frames is 4 times more than that of the Youn’s
system which uses 1 reference frame. Otherwise, the

Memory Read
(0,0) ~ (15,0)

PU
(0,0) ~ (15,0)

Solving Cost 1
(0,0) ~ (15,0)

Memory Read
(16,0) ~ (31,0)

PU
(16,0) ~ (31,0)

Memory Read
(32,0) ~ (47,0)

PU
(32,0) ~ (47,0)

Memory Read
(48,0) ~ (63,0)

PU
(48,0) ~ (63,0)

Memory Read
(32,63)~(47,63)

PU
(32,63)~(47,63)

Memory Read
(32,63)~(47,63)

PU
(32,63)~(47,63)

263 Clock Cycles

1 Clock Cycles 1 Clock Cycles

SAD summation 1
(0,0) ~ (15,0)

Solving Cost 1
(16,0) ~ (31,0)

SAD summation 1
(16,0) ~ (31,0)

Solving Cost 1
(32,0) ~ (47,0)

SAD summation 1
(32,0) ~ (47,0)

Solving Cost 1
(48,0) ~ (63,0)

SAD summation 1
(48,0) ~ (63,0)

Solving Cost 1
(32,63)~(47,63)

SAD summation 1
(32,63)~(47,63)

Solving Cost 1
(32,63)~(47,63)

SAD summation 1
(32,63)~(47,63) CU

2 Clock Cycles

SAD summation 2
(0,0) ~ (15,0)

Solving Cost 2
(0,0) ~ (15,0)

SAD summation 2
(16,0) ~ (31,0)

Solving Cost 2
(16,0) ~ (31,0)

SAD summation 2
(32,0) ~ (47,0)

Solving Cost 2
(32,0) ~ (47,0)

SAD summation 2
(48,0) ~ (63,0)

Solving Cost 2
(48,0) ~ (63,0)

SAD summation 2
(32,63)~(47,63)

Solving Cost 2
(32,63)~(47,63)

SAD summation 2
(32,63)~(47,63)

Solving Cost 2
(32,63)~(47,63)

1 Clock Cycles 1 Clock Cycles 1 Clock Cycles 1 Clock Cycles

Fig. 9. The pipeline process of the proposed system.

Table 8. Synthesis results
Technology 0.13um CMOS
Gate count 1089K

SRAM 6.5 KB
Video Specification 1920x1080P@30Hz
Operating Frequency 135MHz

Search Area 64x64
Reference Frames 5

Table 9. The comparison of the proposed system with previous integer motion estimation systems

 Chen's [8] Huang’s [9] Youn’s [10] EX-Youn’s [10] Kao’s [11] Proposed
Process (um) 0.18 CMOS 0.18 CMOS 0.18 CMOS 0.18 CMOS 0.18 CMOS 0.13 CMOS
Gate count 708K 94.3K 498K ≈ 900K 1449K 1089K

SRAM 8KB - 1.44KB ≈ 2.88KB 2.97KB 6.50KB
Operating Frequency

(CIF@30Hz) 13.5MHz 25 MHz 6.75 MHz 6.75MHz 6.35 MHz 6.53 MHz

Search Algorithm 4 Step Search Full Search Full Search Full Search Full Search Full Search
Block Size 16x16 to 4x4 16x16 to 8x8 16x16 to 4x4 16x16 to 4x4 16x16 to 4x4 16x16 to 4x4

Search Area 64x32 128x64 128x64 128x64 64x64

64x64
(ref0, ref1)
Two 8x8

(ref2, ref3, ref4)
Reference Frames 1 5 1 2 2 5

Full HD
(1920x1080p@30Hz) No No

Yes
(138MHz

with 1 reference
frame)

Yes
(138MHz

 with 2 reference
frame)

Yes
(130MHz

 with 2 reference
frames)

Yes
(135MHz

with 5 reference
frames)

BD-Bit-rate +12.32 % +1.14 % +10.86 % +2.14 % +2.53 % +0.36 %

JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.13, NO.5, OCTOBER, 2013 441

operation clock is 5 times more than that of the Youn’s
system. In other words, the Youn’s system which uses 5
reference frames needs more than 2000K gate count or
faster than 500 MHz operation clock. Because of that, we
except the Youn’s system which uses 5 reference frames
from the comparison group. Instead, because the gate
count of the EX-Youn’s system which uses 2 reference
frames is almost same with our system, it is added to the
comparison group. The gate count and SRAM size of the
EX-Youn’s system are estimated. Because the shared
hardware resource is very small, the gate count of the
EX-Youn’s system is more than 900K and the SRAM
size of the EX-Youn’s system is approximately 2.88 KB.
The proposed system supports Full HD real time
encoding with 5 reference frames and has the highest
performance.Consequently, the efficient pipeline
structure of the proposed system and the proposed fast
multi-reference motion estimation algorithm make it
possible to encode a Full-HD video with 5 reference
frames, high perfor- mance, and acceptable operation
clock speed in real time.

This paper presents a hardware design for the multi-
reference integer motion estimation system by using a
modified fast multi-reference motion estimation
algorithm. The previously proposed algorithm uses a
linear relationship between the motion vector and the
distances from the current frame to the reference frames
along the time axis. The modified algorithm reduces the
overlapping search area and the size of the reduced
search area, and modifies a division equation. The
modified algorithm executes full search area motion
estimation in ref0 and ref1. In ref2, ref3, and ref4, motion
estimation is executed in two squares of 1/64 of the
search area surrounding of each center position. Because
the search area is reduced, the amount of computation is
reduced by 58.7%. In terms of the experimental results,
the modified algorithm shows a 0.36% bit-rate increase
when compared with the five reference frame standard.
The simulation result shows that the performance of the
proposed system is better than that of FMASS [16],
AFMFSA [17], FRFSA [18], the Huang’s system [9], the
Youn’s system [10], the extension version of the Youn’s
system, and the Kao’s system [11].

We propose an efficient pipeline structure and memory
read controller. The proposed fast multi-reference integer
motion estimation system uses 0.13 um CMOS

technology, the gate count of which is 1089K with 6.50
KB SRAM. It can encode a full HD video with 5
reference frames in real time at a 135 MHz clock speed.

ACKNOWLEDGMENTS

This work was supported by the IT R&D program of
MOTIE/KEIT. [10035389, Research on high speed and
low power wireless communication SoC for high
resolution video information mining]

REFERENCES

[1] J. V. Team, Draft ITU-T Recommendation and
Final Draft International Standard of Joint Video
Specification. ITU-T Rec. H.264 and ISO/IEC
14496-10 AVC.

[2] S. H. Lee and H. J. Lee, “A Pipelined Hardware
Architecture of an H.264 Deblocking Filter with an
Efficient Data Distribution”, Journal of
Semiconductor Technology and Science, vol. 6, no.
4, pp. 227-233, Dec. 2006.

[3] L. Yang, K. Yu, J. Li, and S. Li, "An effective
variable block - size early termination algorithm for
H.264 video coding", IEEE Trans. on Circuits and
Systems for Video Technology, vol. 15, no. 6, pp.
784-788, June 2005.

[4] N. Hirai, T. Song, Y. Liu, and T.Shimamoto, “A
Novel Spiral-Type Motion Estimation Architecture
for H.264/AVC”, Journal of Semiconductor
Technology and Science, vol. 10, no. 1, pp. 37-44,
Mar. 2010.

[5] W. Lee, Y. Jung, S. Lee, and J. Kim, "High speed
intra prediction scheme for H.264/AVC" , IEEE
Trans. Consumer Electronics, vol. 53, issue 4,
pp1577-1582, Nov. 2007.

[6] T. C. Chen, S. Y. Chien, Y. W. Huang, C H. Tsai,
C. Y. Chen, T. W. Chen, and L. G. Chen, “Analysis
and architecture design of an HDTV720p 30
frames/s H.264/AVC encoder,” IEEE Trans.
Circuits Syst. Video Technol., vol. 16, no. 6, pp.
673–688, June 2006.

[7] J. Miyakoshi, Y. Kuroda, M. Miyama, K. Imamura,
H. Hashimoto, and M. Yoshimoto, “A sub-mW
MPEG-4 motion estimation processor core for
mobile video application,” in Proceedings of the

442 JUWON BYUN et al : DESIGN OF A FAST MULTI-REFERENCE FRAME INTEGER MOTION ESTIMATOR FOR H.264/AVC

Custom Integrated Circuits Conference 2003, San
Jose, The U.S.A., pp. 181–184, Sept. 2003.

[8] T. C. Chen, Y. H. Chen, S. F. Tsai, S. Y. Chien,
and L. G. Chen, “Fast algorithm and architecture
design of low-power integer motion estimation for
H.264/AVC,” IEEE Trans. on Circuits and Systems
for Video Technology, vol. 17, no. 5, pp. 568–576,
May 2007.

[9] Y. Huang, Z. Liu, Y. Song, S. Goto, and T. Ikenaga,
“Parallel improved HDTV720p targeted propagate
partial SAD architecture for variable block size
motion estimation in H.264/AVC”, IEICE Trans.
Fundamentals, vol.E91-A, no.4, pp.987-997, April
2008.

[10] J. S. Youn and J. R. Choi, “Implementation of
parallel integer motion estimation method by using
reference blocks shared for HD video encoding”,
IEICE Electronics Express, vol. 8, no. 17, pp.1380-
1386, September 2011.

[11] C. Y. Kao and Y. L. Lin, “A memory-efficient and
highly parallel architecture for variable block size
integer motion estimation in H.264/AVC”, IEEE
Trans. Very Large Scale Integration Systems, vol.
18, no. 6, pp. 866-874, June 2010.

[12] J. Byun, J. Choi, and J. Kim, “A fast multi-
reference frame motion estimation algorithm”,
IEEE Trans. Consumer Electronics, vol 56, issue 3,
pp.1911-1917, August 2010.

[13] T. Wiegand, X. Zhang, and B. Girod, “Block-based
hybrid video coding using motion-compensated
long-term memory prediction,” Proc. Picture
Coding Symp. Berlin, The Germany, Sept. 1997.

[14] T. Wiegand, X. Zhang, and B. Girod, “Long-term
memory motion-compensated prediction,” IEEE
Trans. Circuit and Systems for Video Technology,
vol. 9, pp. 70-84, February 1999.

[15] Y. W. Huang, B. Y. Hsieh, T. C. Wang, S. Y.
Chien, S. Y. Ma, C. F. Shen, and L. G.. Chen,
“Analysis and reduction of reference frames for
motion estimation in MPEG-4 AVC/JVT/H.264”,
ICASSP’03, vol. 2, pp.809-812, Hong Kong, The
China, Apr. 2003.

[16] X. Li, Li, E.Q., and Y. K. Chen, “Fast multi-frame
motion estimation algorithm with adaptive search
strategies in H.264”, ICASSP’04, vol. 3, pp 369-
372, Quebec, The Canada, May 2004.

[17] L. Shen, Z. Liu, Z. Zhang, X. Shi, “An adaptive

and fast multiframe selection algorithm for H.264
video coding”, IEEE Signal Processing Letters, vol.
14, no. 11, PP 836-839, Nov. 2007.

[18] Kangjun Lee, Gwangil Jeon, and Jechang Jeong,
“Fast reference frame selection algorithm for
H.264/AVC”, IEEE Trans. Consumer Electronics,
vol 55, issue 2, pp.773-779, August 2009.

[19] Bjontegaard, G.: Recommended Simulation
Condition for H.26L, ITU-T Q6/SG16, Doc.
#VCEG-L38, 9-12 Jan, 2001.

Juwon Byun received B.S. and M.S.
degrees in electrical and electronic
engineering from Yonsei University,
Seoul, Korea, in 2007 and 2009,
respectively, and is currently
pursuing his Ph.D. degree. His
research interests include algorithms

and SoC design for video encoder/decoder.

Jaeseok Kim received a B.S. degree
in electronic engineering from
Yonsei University, Seoul, Korea in
1977, M.S. degree in electrical and
electronic engineering from KAIST,
Daejon, Korea in 1979, and Ph.D.
degree in electronic engineering from

RPI, NY, USA in 1988. From 1988 to 1993, he was a
member of the technical staff at AT&T Bell Labs, USA.
He was Director of the VLSI Architecture Design Lab of
ETRI from 1993 to 1996. He is currently a professor in
the electrical and electronic engineering department at
Yonsei University, Seoul, Korea. His current research
interests include communication IC design, high
performance Digital Signal Processor VLSI design, and
CAD S/W.

