• Title/Summary/Keyword: fast fading channel

Search Result 116, Processing Time 0.025 seconds

Joint Kalman Channel Estimation and Turbo Equalization for MIMO OFDM Systems over Fast Fading Channels

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Shen, Ye-Shun;Liao, Chih-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5394-5409
    • /
    • 2019
  • The paper investigates a novel detector receiver with Kalman channel information estimator and iterative channel response equalization for MIMO (multi-input multi-output) OFDM (orthogonal frequency division multiplexing) communication systems in fast multipath fading environments. The performances of the existing linear equalizers (LE) are not good enough over most fast fading multipath channels. The existing adaptive equalizer with decision feedback structure (ADFE) can improve the performance of LE. But error-propagation effect seriously degrades the system performance of the ADFE, especially when operated in fast multipath fading environments. By considering the Kalman channel impulse response estimation for the fast fading multipath channels based on CE-BEM (complex exponential basis expansion) model, the paper proposes the iterative receiver with soft decision feedback equalization (SDFE) structure in the fast multipath fading environments. The proposed SDFE detector receiver combats the error-propagation effect for fast multipath fading channels and outperform the existing LE and ADFE. We demonstrate several simulations to confirm the ability of the proposed iterative receiver over the existing receivers.

A Study of TCP Performance with Snoop Protocol over Fading Wireless Links

  • Cho, Yang-Bum;Cho, Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.4
    • /
    • pp.214-218
    • /
    • 2004
  • In this paper, we have analyzed TCP performance over wireless correlated fading links with and without Snoop protocol. For a given value of the packet error rate, TCP performance without Snoop protocol is degraded as the fading is getting fast (i.e. the user moves fast). When Snoop protocol is introduced in the base station, TCP performance is enhanced in most wireless environments. Especially the performance enhancement derived from using Snoop protocol is large in fast fading channel. This is because packet errors become random and sporadic in fast fading channel and these random packet errors (mostly single packet errors) can be compensated efficiently by Snoop protocol's local packet retransmissions. But Snoop protocol can't give a large performance improvement in slow fading environments where long bursts of packet errors occur. Concerning to packet error rate, Snoop protocol results in the highest performance enhancement in the channel with mid-high values of packet error rate. This means Snoop protocol cannot fully fulfill its ability under too low or too high packet error rate environments.

A Frequency Domain Equalization Algorithm for Fast Time-Varying Fading Channels

  • Tran, Le-Nam;Hong, Een-Kee;Liu, Huaping
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.473-479
    • /
    • 2009
  • Conventional frequency domain equalization (FDE) schemes were originally devised for quasi-static channels. Thus, such equalization schemes could suffer from significant performance degradation in fast-fading channels. This paper proposes a frequency domain equalization algorithm to mitigate the effect of fast time-varying fading. First, a mathematical expression is derived to quantify the total interference resulting from the time variation of the channel. Then, the proposed approach attempts to eliminate the effect of time-variations of the channel. This cancellation allows efficient use of the classical FDE structures in fast time-varying fading environments, although they are built upon the quasi-static channel model. Simulation results of bit-error-rate performance are provided to demonstrate the effectiveness of the proposed algorithm.

Optimum Power Allocation for Distributed Antenna Systems with Large Scale Fading-only Feedback (Large Scale Fading값만을 피드백하는 분산 안테나 시스템을 위한 최적 전력 할당)

  • Lim, Dong-Ho;Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6A
    • /
    • pp.635-642
    • /
    • 2008
  • We propose the Optimum Power Allocation (OPA) scheme for Distributed Antenna Systems(DAS) in the time-varying Rayleigh fading channel. Recently, the OPA schemes which uses the Channel State Information (CSI) including a small scale (fast) fading have been proposed. However, the channel is changing vary fast over time due to small scale fading, therefore Bit Error Rate (BER) increases. Because of this reason, we derive the OPA for minimizing BER in DAS, which only uses a large scale fading to CSI and excepts a small scale fading. The simulation results show that the proposed OPA achieves better BER performance than conventional OPA considering a small scale fading in time-varying Rayleigh fading channel, and also has similar performance in Rayleigh flat-fading environment. The BER performance of proposed OPA which derived in Rayleigh fading channel is similar to minimum BER of Ricean fading channel which has small Line-of-Sight (LOS).

Block Error Performance Analysis of Mobile Multimedia Communication System in Nakagami fading Channel

  • Kang Heau-Jo;Son Sung-Chan
    • Journal of Digital Contents Society
    • /
    • v.5 no.2
    • /
    • pp.101-105
    • /
    • 2004
  • The block error probabilities of noncoherent frequency shift keying in a Nakagami fading channel are presented in this papaer. The channel fading speed, show or fast. is consider in evaluating block error probabilities. The effectiveness of diversity combing and error correction coding in improving block error performance is examined. The effect of cochannel interference on block error performance is also studied in this paper.

  • PDF

Improved Design Criterion for Space-Frequency Trellis Codes over MIMO-OFDM Systems

  • Liu, Shou-Yin;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.622-634
    • /
    • 2004
  • In this paper, we discuss the design problem and the robustness of space-frequency trellis codes (SFTCs) for multiple input multiple output, orthogonal frequency division multiplexing (MIMO-OFDM) systems. We find that the channel constructed by the consecutive subcarriers of an OFDM block is a correlated fading channel with the regular correlation function of the number and time delay of the multipaths. By introducing the first-order auto-regressive model, we decompose the correlated fading channel into two independent components: a slow fading channel and a fast fading channel. Therefore, the design problem of SFTCs is converted into the joint design in both slow fading and fast fading channels. We present an improved design criterion for SFTCs. We also show that the SFTCs designed according to our criterion are robust against the multipath time delays. Simulation results are provided to confirm our theoretic analysis.

  • PDF

A Time-Varying Modified MMSE Detector for Multirate CDMA Signals in Fast Rayleigh Fading Channels

  • Jeong, Kil-Soo;Yokoyama, Mitsuo;Uehara, Hideyuki
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.143-152
    • /
    • 2007
  • In this paper, we propose a time-varying modified minimum mean-squared error (MMSE) detector for the detection of higher data rate signals in a multirate asynchronous code-division multiple-access (CDMA) system which is signaled in a fast Rayleigh fading channel. The interference viewed by a higher data rate symbol will be periodic due to the presence of a lower data rate symbol which spans multiple higher data rate symbols. The detection is carried out on the basis of a modified MMSE criterion which incorporates differential detection and the ratio of channel coefficients in two consecutive observation intervals inherently compensating the fast variation of the channel due to fading. The numerical results obtained by the MMSE detector with time-varying detection show around 3 dB (M=2) and 6 dB (M=4) performance improvement at a BER of $10^{-3}$ in the AWGN channel, while introducing more computational complexity than the MMSE detector without time-varying detection. At a higher $E_b/N_0$, the proposed scheme can achieve a BER of approximately $10^{-3}$ in the presence of fast channel variation which is an improvement over other schemes.

  • PDF

Improved Channel Estimation Scheme for Fast Fading in Reverse Link of W-CDMA systems (W-CDMA 시스템의 역방향 링크에서 고속 페이딩을 위한 채널 추정 알고리즘의 성능분석)

  • 이상문;구제길;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.8B
    • /
    • pp.1383-1390
    • /
    • 2000
  • Pilot symbol-based coherent detection is used to increase the link capacity in CDMA systems. In order to detect data efficiently, data signals must be compensated with channel estimation values obtained by using pilot symbols. Many channel estimation schemes were published in previous literatures. However, most of these schemes have performance deterioration in fast fading because of using average vaules of several timeslots. In this paper, we propose an improved channel estimation scheme which is efficient in fast fading and also operates in slow fading satisfactorily. Through computer simulation we show that the proposed scheme has better performance than other schemes in terms of both MSE and BER in fast fading and show robustness for variation in Doppler frequencies.

  • PDF

Block Error Performance of Orthogonal Multicarrier 16 QAM Signal in a Frequency Selective Rician Fading Environment (주파수 선택성 라이시안 페이딩 환경에서 직교 다중반송파 16 QAM 신호의 블록 오류율 성능)

  • Kim Young-Chul;Kang Duk-Keun
    • Journal of Digital Contents Society
    • /
    • v.5 no.1
    • /
    • pp.28-34
    • /
    • 2004
  • In this paper, we have analyzed the block error probability of orthogonal multicarrier 16 QAM signal in a frequency selective Rician fading environment. The block error probability is evaluated with several parameters such as normalized propagation delay $(\gamma/T_S),$, bit energy to noise power ratio $(E_b/N_0),$ and desired signal to undesired signal power ratio (DUR) in fast fading and slow fading channels. In the fast fading channel, The result shows that the block error probability rather in the fast fading channel achieves better performance than in the slow fading channel, when the error correction capability is one or two.

  • PDF

Predetection Filtering Effect of GMSK with Discriminator Detection in Rayleigh Fading Channel (Rayleigh 페이딩 채널에서 Discriminator형 GMSK변복조기 수신 대역 필터의 영향)

  • 김남수;최동승;김영식;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.7
    • /
    • pp.565-573
    • /
    • 1990
  • In this paper, optimum bandwidth at BbT=0.25 was simulated uisng the formular of S.Elnoubi, who analyzed effect of receiving bandpass filter of discriminator type GMSK modem under static and fast Rayleigh fading channel which is applicable to land mobile channel environment, and measured with experimental system. The experimental results were well agreed with the simulation. The result shows that filter bandwidth is optimal at BrT=0.7 under static fading(fDT=0), while the performance is less sensitive to the bandwidth as Eb/No and fading rate fDT bacome higher.

  • PDF