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In this paper, we discuss the design problem and the 
robustness of space-frequency trellis codes (SFTCs) for 
multiple input multiple output, orthogonal frequency 
division multiplexing (MIMO-OFDM) systems. We find 
that the channel constructed by the consecutive 
subcarriers of an OFDM block is a correlated fading 
channel with the regular correlation function of the 
number and time delay of the multipaths. By introducing 
the first-order auto-regressive model, we decompose the 
correlated fading channel into two independent 
components: a slow fading channel and a fast fading 
channel. Therefore, the design problem of SFTCs is 
converted into the joint design in both slow fading and fast 
fading channels. We present an improved design criterion 
for SFTCs. We also show that the SFTCs designed 
according to our criterion are robust against the multipath 
time delays. Simulation results are provided to confirm 
our theoretic analysis. 
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I. Introduction 

Space-time coding [1] as a promising approach to improve 
high data rate wireless communications by deploying multiple 
antennas at a transmitter or/and at a receiver in order to 
establish multiple input multiple output (MIMO) channels has 
attracted considerable attention and research interest in recent 
years. This technique represents an integration of diversity, 
modulation and channel coding. In [1], Tarokh et al derived the 
design criteria for space-time trellis codes (STTCs) in slow and 
fast flat fading channels and presented some handcraft STTCs. 
Based on the Tarokh’s criteria, several optimized STTCs with 
better coding gain have since been reported in [2] and [3] for 
slow flat fading channels and in [5] and [7] to [9] for fast flat 
fading channels. Moreover, taking account of the special cases 
of large diversity, low signal-to-noise ratio (SNR), or distance 
spectrum [20], several improved design criteria have been 
derived: trace criteria in [4] and [6] and distance spectrum 
criteria in [8], [9] and [10]. 

In the presence of frequency selectivity, since the orthogonal 
frequency division multiplexing (OFDM) technique can 
significantly reduce the receiver complexity, a combined system 
of STTCs with OFDM was first proposed in [13], called a 
MIMO-OFDM system. Due to incorporating both the 
advantages of space-time coding and OFDM, MIMO-OFDM 
seems to be an attractive solution for future broadband wireless 
communication systems. Since the coding is performed across 
both transmit antennas and subcarriers of OFDM, i.e., space-
frequency coding, MIMO-OFDM can exploit both spatial and 
frequency diversity (multipath diversity) without requiring the 
channel state information (CSI) at the transmitter. It was pointed 
out in [14] and [15] that the maximum achievable diversity is the 
product of the number of transmit antennas, receive antennas and 
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the propagation paths between a pair of transmit and receive 
antennas. So far, a large number of papers [14]-[17] have been 
dedicated to obtaining the frequency diversity and to reduce the 
decoding complexity for MIMO-OFDM systems. However, 
several remaining fundamental issues are not well confirmed: for 
example, 1) the design criteria for space-frequency trellis codes 
(SFTCs); 2) the robustness of space-frequency codes in various 
multipath propagation environments; and 3) an efficient approach 
to obtain frequency diversity with low decoding complexity. 

Recently, the robustness of SFTCs was addressed in [10] to 
[12]. In [10], the ideal interleaver and deinterleaver are 
employed at the transmitter and at the receiver, respectively, to 
convert the correlated fading channel constructed by 
consecutive subcarriers of an OFDM block into an ideal fast 
fading channel, so that the code design problem for SFTCs is 
simply converted into the conventional STTC’s design 
problem over fast fading channels. In [11], from the general 
pairwise error probability (PEP) analysis, the good SFTCs 
with better robustness against the multipath time delays were 
studied using an exhaustive computer search. Using the closer-
to-reality channel model, the impact of the propagation 
environment on the performance of SFTCs was investigated in 
[12]. However, the general design criteria for space-frequency 
codes are not yet available. 

In this paper, we first analyze the characteristics of the fading 
channel constructed by all the subcarriers of an OFDM block 
in the frequency domain. We show that all the subcarriers of 
the OFDM block establish a frequency-correlated fading 
channel having a regular auto-correlation function related to the 
number of multipaths. The frequency-correlated fading channel 
is equivalent to the time-correlated fading channel resulting 
from the Doppler frequency in the conventional space-time 
coding systems. By introducing the first-order auto-regressive 
channel model, we derive the design criterion for SFTCs. 
Those SFTCs subjected to our design criterion possess a large 
coding gain and robustness for various multipath propagation 
environments. 

The rest of the paper is organized as follows. We review the 
system model and preliminary results of the STTC’s design 
criteria for slow and fast fading channels in section II. In section 
III, we investigate the frequency-selective fading channel. The 
design criterion for SFTCs is proposed in section IV. In section V, 
we provide several simulation results to confirm our theory. 
Finally, we give our conclusion in section VI. 

II. System Model and Preliminary Results 

1. System Model 

Let us consider a baseband communication system with nT 

transmit antennas and nR receive antennas. The information 
data is encoded by a space-time encoder, which generates nT 
parallel data sequences. At each symbol period t, the nT parallel 
outputs Tn

ttt ccc ,,, 21 are simultaneously transmitted by nT 
transmit antennas. We assume that the frame length is L and that 
the elements of the signal constellation are contracted so that the 
average energy of the constellation is 1. At symbol period t, the 
received signal at antenna j, j =1, 2,…, nR, is given by [1] 
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where Es denotes the average energy per symbol at the transmit 
antenna and i

tn  is independent Gaussian white noise with 
zero-mean and a variance of N0/2 per dimension at receive 
antenna j at time t. The coefficient hi,j(t) is the fading 
attenuation for the path between the transmit antenna i and 
receive antenna j pair at time t. Throughout this paper, we 
assume that there is no spatial correlation between antennas at 
the transmitter and antennas at the receiver, and the coefficient 
hi,j(t) is modeled as a complex Gaussian random variable with 
zero-mean and a variance of 1/2 per dimension. 

2. Pairwise Error Probability 
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was transmitted. A maximum likelihood decoder might select 
erroneously in favor of another codeword, 
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state information is available at the receiver, the conditional 
PEP and its upper bound are given by [1] 
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where h is the channel matrix and ),(2 echd  is the modified 
Euclidean distance (MED) between codeword c and e. The 
MED is given by 
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3. Design Criterion for Space-Time Trellis Codes in 
Rayleigh Slow Fading Channels 

In the case of Rayleigh slow fading channels (quasi-static 
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fading channels), the fading coefficients hi,j(t) are constant in a 
frame but change independently from one frame to another 
such that 

.)()2()1( ,,,, jijijiji hLhhh ====         (4) 

Following the derivation in [1], the MED can be rewritten as 
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where λi  (i=1,2,…,r) and r are the non-zero eigenvalues and 
the rank of the codeword distance matrix 
A(c,e)=B(c,e)BH(c,e), respectively, in which B(c,e) is 
the codeword difference matrix defined as B(c,e)= 
B(c,e)=(b1,b2,…,bt,…,bL), and ,],...,[ 11 Tn

t
n
tttt

TT ecec −−=b  
where T)(⋅ and H)(⋅ denote the transpose and the conjugate 
transpose. ji,β are independent complex Gaussian random 
variables with zero-mean and a variance of 1/2 per dimension. 
Substituting (5) into (2) and averaging over all ji,β term by 
term, then the PEP can be obtained [1] as  
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At a high SNR, (6) can be further simplified [1] as 
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As defined in [1], rnR and r
i

r
i

/1
1 )( λ=∏ are called diversity 

and coding gain, respectively, which are used to describe the 
performance measure of space-time coding. The code design is 
to maximize the minimum rank r over all pairs of distinct 
codewords while maximizing the coding gain. This is the so-
called rank-determinant criterion [1]. 

4. Design Criterion for Space-Time Trellis Codes in 
Rayleigh Fast Fading Channels 

In this case of Rayleigh fast fading channels, the fading 
coefficient hi,j(t) varies independently from one symbol period 
to another. Following the derivation in [1], the ),(2 echd for a 
fast fading channel can be expressed as [1] 
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where ),( ecρ denotes the set of time instances for t =1,2,…,L 
such that tt ec ≠ and ∑ =
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22ec and )(,1 tjβ  
are independent complex Gaussian random variables for 
different j=1,2,…,nR and t =1,2,…,L with zero-mean and the 
variance of 1/2 per dimension. Let δ denote the number of 

),( ecρ , called symbol-wise Hamming distance. Then, there 
are a total of δnR independent random variables in (8). 
Substituting (8) into (2) and averaging (2) over all the δnR 
independent variables, ,,1 jβ  the PEP for fast fading channels 
can be obtained [1] as  
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At a high SNR, (9) can be further simplified [1] as  
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As defined in [1], δnR is called diversity and 
δ

ρ
/2

e)(c, ttt ec −Π ∈ is called coding gain. The code design for 
fast fading channels is to maximize the minimum symbol-wise 
Hamming distance, δ, over all pairs of distinct codewords 
while providing the maximum coding gain. This is the so-
called distance-product criterion [1]. 

5. Space-Frequency Coding 

In order to deal with the frequency-selectivity problem, the 
combined MIMO-OFDM system was first reported in [13], in 
which the output codeword from the space-time encoder was 
allocated into subcarriers of OFDM blocks and was transmitted 
by its corresponding transmit antennas. We use i

kc to denote 
the symbol transmitted at subcarrier k, k=0,1,…, K–1, and at 
transmit antenna i, i =1, 2, …, nT, where K is the number of 
total subcarriers of one OFDM block. We use Hi,j (k) to denote 
the fading coefficient (frequency response) for the k-th 
subcarrier from transmit antenna i to receive antenna j. At the 
receiver, the received signal at receive antenna j, j=1, 2, …, nR, 
on the subcarrier k is expressed as 
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where j
kn  is independent complex Gaussian white noise with 
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zero-mean and a variance of N0/2 per dimension. Since the 
codeword is mapped onto subcarriers of the OFDM blocks, the 
space-time coding is renamed as space-frequency coding. 
Comparing (11) with (1), the only difference is that the time 
index t in (1) is replaced by subcarrier index k in (11). 

III. Frequency-Selective Fading Channels and 
Correlation Properties 

A frequency-selective fading channel can be described by the 
tapped-delay-line model in the time domain. The time-variant 
impulse response at time t to an impulse applied at time t-τ 
between transmit antenna i and receive antenna j can be 
expressed [18] as 
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where P is the number of non-zero channel taps, qi , j(t, l) is the 
complex coefficient of the l-th tap, and Ts is the sampling 
interval of the OFDM system. We usually model qi , j(t, l) as an 
independent Gaussian random variable with zero-mean and the 
normalized power, E[|qi ,j(t, l)|2]=1/P. Since we deal with the 
quasi-static fading channels, i.e., the fading coefficients are 
constant during an OFDM block and vary independently from 
one OFDM block to another, the time index can be dropped for 
the sake of brevity. With a proper cyclic prefix, a perfect 
sampling time, and tolerable leakage, the frequency response, 
i.e., fading coefficient, for the k-th subcarrier between transmit 
antenna i and receive antenna j is expressed as 
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Let us investigate the statistical characteristics of Hi,j(k) by 
evaluating its mean, variance, and auto-correlation. Using the 
known conditions, E[hi, j(l)]=0, E[|hi , j(l)|2]=1/P, and 
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are summarized as follows: 
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Observing (14), we can find the following: 

1) Each fading coefficient Hi,j(k) corresponding to the k-th 
subcarrier is a complex random variable with zero-mean 
and a variance of 1 (1/2 per dimension). However, these 
subcarriers are correlated, and the auto-correlation function 
RHH(·) only depends on the difference of the subcarrier 
index k. Therefore, the sequence of fading coefficients 
along the subcarrier index k can be viewed as a wide-sense 
stationary narrowband complex Gaussian process. In other 
words, the fading channel that is established by all the 
consecutive subcarriers within one OFDM block can be 
viewed as a frequency-correlated fading channel, which is 
identical to the conventional time-correlated fading 
channel described by the well-known Jakes model [18]. In 
the sequel, the design problem of space-frequency codes 
over MIMO-OFDM systems is identical to the problem of 
STTC design over time-correlated fading channels. 

2) For a clear observation of the correlation characteristic 
versus the number of propagation paths, as an example, the 
correlation of the first subcarrier with all the others is plotted 
in Fig.1, where K=64 and P=2 to 7. As demonstrated, the 
larger the number of multipaths or time delay, the smaller 
the correlation between adjacent subcarriers. 

3) One interesting aspect of the correlation function worth 
mentioning is that the correlation function at each case has 
P–1 zero-points corresponding to P–1 subcarriers. This 
means that for each subcarrier there are P–1 subcarriers 
that are uncorrelated with each other, and they are 
distributed uniformly among the K subcarriers with 
interval K/P. This characteristic will be detailed and 
discussed in another publication for obtaining full diversity 
over MIMO-OFDM systems. 

 

 

Fig. 1. Correlation of the first subcarrier with the others. 
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In the next section, we introduce the first-order auto-
regressive model to express the frequency-correlated fading 
channels and derive the design criterion for SFTCs. 

IV. Design Criterion for Space Frequency Trellis Codes 

From the above analysis, the fading channel constructed by 
the consecutive subcarriers in an OFDM block can be modeled 
as a wide-sense stationary narrowband complex Gaussian 
process. We introduce the first-order auto-regressive model to 
express the random process (this method was also used by Peel 
et al. to analyze the performance of the differential unitary 
space-time modulation in [19]). Then, Hi, j(k) is described as 

),()()0()()( ,,,,, kWkHkkH jijijijiji ησ +=       (15) 

where Hi,j(0) is the fading coefficient of the 0-th subcarrier as a 
reference, which is a complex Gaussian random variable 
changing independently from one OFDM block to another 
with zero-mean and a variance of 1/2 per dimension. Variable 
Wi, j(k) is an independent complex Gaussian random variable 
also with zero-mean and a variance of 1/2 per dimension, but it 
changes independently from subcarrier to subcarrier and is 
independent of Hi , j(0). Variables σ i, j(k) and η i,j(k) are real 
numbers and ,1)(0 , ≤≤ kjiσ  .1)(0 , ≤≤ kjiη  Since the 
energy is conserved, [σ i , j(k)]2+[η i , j(k)]2 = 1. In fact, the 
meaning of (15) is that one correlated fading channel can be 
decomposed into two independent components: one 
corresponds to the slow fading channel, the other to the fast 
fading channel. Clearly, σi,j(k) and ηi,j(k) exhibit a degree of 
correlation; a  large σi, j(k) (small ηi, j(k)) corresponds to a 
fading channel with high correlation (nearing the slow fading 
channel) and a large η i, j(k) (small σi,j(k)) to a channel with low 
correlation (nearing the fast fading channel). When σi, j(k) =1 
η i, j(k)=0, k=1,…,K, the fading channel is a slow fading 
channel (quasi-static fading). Conversely, the fading channel is 
a fast fading one. 

Substituting (15) into (14) and putting σi, j(0)=1, the relation 
of σi, j(k)and η i,j(k)  and correlation factor RHH(k) can be given 
as 

  )()(, kRk HHji =σ                 (16) 
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As shown in Fig. 1, in a narrow range of k (during a simple-
error-event [20], [21] ), σi, j(k)  is a descending function as 
subcarrier index k increases, and η i, j(k)  is a rising function. 

Substituting (15) into (3), the MED can be rewritten as 
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where the real and imaginary parts of Wi, j(k) are both 
independent random variables with zero-mean and a variance 
of 1/2, and Hi,j(0) and Wi, j(k) are independent of each other. 
After processing, the sum of part 3 and part 4 is expressed as 
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which are independent of each other with zero-mean and have a 
variance of 1/4. We use ρ(c, e) to denote denotes the set of 
subcarriers k =1,…,K, such that .kk ec ≠  Let δ denote the 
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number of ρ(c, e). Then, s maximally contains δ × nT × nT × nR ×4 
independent Gaussian random variables, ,4...,,1),(,', =nkX n

jii  
each with zero-mean and a variance of 1/4. Substituting (19) 
into (2), and averaging (2) over all the δ×n T×n T ×n R ×4 
Gaussian random variables, the contribution of part 3 and part 
4 to PEP, denoted as Ps(c,e), can be obtained. Obviously, 
Ps(c,e) is related to the SNR, the number of δ×n T×n T ×n R ×4, 
and the SFTCs’ construction; however, it is not a large number. 
To simplify the discussion, we omit the effect of the 
construction of SFTCs on Ps(c,e). As an example, we give an 
estimation value of Ps(c,e) for the 16-state, two transmit antennas 
and one receive antenna SFTCs. Due to the high correlation 
between the adjacent subcarriers in MIMO-OFDM systems, 
η i,j(k) are often very small numbers. It is reasonable to assume 
that 0,, 4/)()(2 NEkk sjiji ησ approaches 1 at a moderate SNR. 
Then, Ps(c,e) is to average (2) over 48 random variables, 

).(,', kX n
jii  Consequently, Ps(c,e) has the order of 4×102. 

Note that according to the consistent estimation theory, when 
δ×n T×n T×n R ×4 approaches a very large value (infinite), s 
approaches zero, i.e., Ps(c,e) approaches 1. For convenience, 
we define the following expression: Ps(c,e)=F(SNR, δ, nT, nR). 

Comparing part 1 with (5), we find that part 1 corresponds 
to a slow Rayleigh fading channel, and only the codeword 
difference matrix B(c, e) is impacted by σi, j(k) .  For simplicity 
of discussion, it is a reasonable assumption that all the channels 
between each pair of transmit and receive antennas have the 
same fading property, such as σi, j(k)=σ (k)  and η i,j(k)=η i(k) , 
i=1,…, nT, j=1,…, nR. Then, B (c, e) and A (c, e) are modified as 
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Similarly, compared with (8), part 2 clearly corresponds to 
the fast Rayleigh fading channel. Following the derivation of 
section II, the PEP of SFTCs over frequency-correlated 
Rayleigh fading channels can be obtained as 
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where r and ,,...,1,' rii =λ are the rank and nonzero 
eigenvalues, respectively, of the modified codeword distance 
matrix As(c,e). As mentioned above, the fading channels 
constructed by all the consecutive subcarriers mainly exhibit 
the slow fading characteristic. In addition, only the first several 
simple-error-events may occur since the maximum likelihood 

estimator is used at the receiver [20], [21]. This means that we 
consider the correlation of subcarriers only in a narrow range 
for several consecutive subcarriers. Therefore, the number of 
σ (k)  is close to one, but η(k)  is near zero. Consequently, to 
ensure >>0

2 4/)( NEk sη 1seems to be impossible; therefore 
(20) cannot be simplified in the same way as in the types of (7) 
and (10). In what follows, the simplification of (20) for 
different cases of SNR is investigated. 

Because σ(k) is close to one and we are only interested in the 
several consecutive subcarriers (within a simple-error-event), 
we assume σσ ≈)(k  as a constant and ηη ≈)(k . Thus, (20) 
is expressed as 
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Case 1. 
Assuming that the SNR is lower, so <<0

2 4/)( NEk sη 1, it 
follows from (21), as discussed in [4] and [9], that 
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Case 2. 
At a moderate SNR, which is a practical case, η2(k)Es/(4N0) 

approximates to one, i.e., .1)4/()( 0
2 ≈NEk sη  It follows 

from (21), as discussed in [4] and [9], that 
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We find that in this case, the coding gain is changed as 
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λ and the diversity is still 

rnR. After the approximation processing, the effect of the 
correlation on diversity is hidden. But this change of diversity 
can be easily understood from (18). 

Case 3. 
Assuming that the SNR is sufficiently high so that   

η2(k)Es/(4N0) is more than one–but not far more from one–it 
follows from (21) that 
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Due to the limit of space, we mainly discuss Case 2 in the 
rest of the paper, since it has a high practicability. 

1) Although the effect of channel correlation on diversity is 
not shown explicitly in (23), it results from the approximate 
processing, and the change of diversity can be observed clearly 
from (21). The minimum diversity of SFTCs is always 
preserved as rnR, but the maximum achievable diversity is δ nR 
(upper bound). For various propagation channel environments, 
the diversity varies from rnR to δnR, where r and δ  are, 
respectively, the minimum rank and minimum symbol-wise 
Hamming distance over all pairs of distinct codewords. 

2) The coding gain of SFTCs in MIMO-OFDM systems, 
indeed, is dominated simultaneously by both the determinant  

i
r
i λ1=∏ and the modified product distance (MPD) 

).1( 2
e)(c, kkk ec −+∏ ∈ρ  

3) The importance of (21) is that it reveals the fact that the 
performance is affected simultaneously by two factors: the 
unchanged part (slow fading) and the fast changing part (fast 
fading). 

Therefore, we propose the following code design criterion 
for SFTCs:  

Proposition 1. Rank and distance criterion for space-
frequency trellis coding 

■ Simultaneously maximize the minimum symbol-wise 
Hamming distance δ and the minimum rank r of matrix  
A(c,e) over all the pairs of distinct codewords. 
■ Instead of maximizing either the minimum i

r
i λ1=∏  or 

the minimum ,2
e)(c, kkk ec −∏ ∈ρ  maximize the minimum 

product [ ] [ ] .)1( 2
e)(c,1 kkki

r
i ec −+∏⋅∏ ∈= ρλ  

Note that the new criterion does not need any knowledge of 
the channel environment (multipath and time delay). Obviously, 
it is a combination of the rank and distance criteria. Hence, we 
can use the existing tools to design the SFTCs for MIMO-
OFDM systems. The feasibility of the criterion will be verified 
by simulations in section V. 

V. Simulation Results 

To corroborate the above analysis, we have performed 
computer simulations through several examples. In all the 
simulations, we assume that all the propagation channels 
between pairs of transmit and receive antennas have the same 
number of paths, and each path has identical normalized average 
power 1/P. There is no spatial correlation between antennas of a 
transmitter and antennas of a receiver. Unless specified 
particularly, the space-frequency coded MIMO-OFDM system 
consists of K=64 subcarriers and 16 cyclic prefix samples in an 
OFDM block, referring to the IEEE 802.11a wireless LAN 
standards. The sampling interval of the OFDM system is 
Ts=50 ns. We consider the quasi-static fading channels where 
the fading coefficients hi , j(t) are constant within one OFDM 
block and vary independently from one OFDM block to 
another. The signal-to-noise ratio is defined as SNR=10 
log(nTEs /N0). The figure of merit is the bit-error rate. 

Example 1. Diversity of SFTCs versus multipaths 

This example verifies the fact that the diversity of SFTCs can 
be improved as the number of propagation paths increases. In 
this example, the 16-state, two transmit-antennas, quaternary 
phase shift keying (QPSK) space-time trellis code (STTC) 
designed in [1], named as TSC after the authors, is directly 
used as the space-frequency trellis code for the MIMO-OFDM 
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system. The TSC code has the minimum rank, r=2, and the 
minimum symbol-wise Hamming distance, δ=3. From the 
analyses in sections III and IV, the correlation between 
subcarriers will be reduced as the number of multipaths 
increases, i.e., the component exhibiting the fast fading 
property of the channel constructed by the consecutive 
subcarriers becomes strong. Hence, the diversity of SFTCs will 
gradually move from 2nR to 3nR. The simulation results are 
illustrated in Fig. 2. The performance curves of TSC both in the 
ideal slow fading channels and in fast fading channels are also 
plotted in Fig. 2. As shown, the performance curve of 2 
multipaths (P=2) approximately parallels the slow fading 
curve, but the curve of 12 multipaths (P=12) approaches the 
fast fading curve. The simulation results evidently demonstrate 
the accuracy of our analysis. Obviously, the diversity of space-
time trellis codes achieved in slow fading channels, i.e., spatial 
diversity, can be preserved completely by using the STTCs as 
SFTCs. When δ  > r, in additional to spatial diversity, a portion 
of frequency diversity (not whole) can be achieved in the 
MIMO-OFDM systems. But little diversity can be improved 
when δ  = r. The effect of multipaths on the coding gain of 
SFTCs will be investigated in the following examples. 

 
 

Fig. 2. Performance comparison of the 16-state QPSK TSC [1]
code over different multipath channels. 
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Example 2. Coding Gain of the 16-state SFTCs versus code 

constructions over MIMO-OFDM systems 

In proposition 1, we pointed out that the coding gain of 
SFTCs is mainly determined by the minimum value of 

[ ] [ ] .)1( 2
),(1 kkki

r
i ecec −+∏⋅∏ ∈= ρλ  This example is used to 

demonstrate our proposition. The reported 16-state, two 
transmit antennas, QPSK STTCs are listed in Table 1. These 

codes are designed according to the rank-determinant criterion 
[1]-[5], trace criterion [6], and distance-product criterion [7], [8], 
respectively. It is proved in [20] and [21] that the performance 
is mainly determined by the first several simple-error-events 
that diverge from the correct path but converge back to it soon 
after along the shortest error path. The first three simple-error-
events that have a symbol-wise Hamming distance of 3, 4 or 5, 
respectively, are analyzed. Along all the pairs of distinct 
codewords with the minimum rank r=2 and minimum 
symbol-wise Hamming distance δ  = 3, the corresponding 
minimum values of determinant Det ),( 1 i

r
i λ=∏  product 

distance PD ),( 2
),( kkk ecec −∏ ∈ρ modified product distance 

MPD )),1(( 2
),( kkk ecec −+∏ ∈ρ  and the minimum value of 

the product of both Det and MPD (Det*MPD)–moreover, the 
number of distinct pairs of codewords corresponding to the 
minimum value Det*MPD, i.e., distance spectrum (DS) [20]–
are computed and presented in Table 1. One sees that the codes 
CYV [6] and ZQWL [8] have the maximum minimum 
PD =128, while codes YB [3], TC [4], and VY [5] have the 
maximum minimum value of Det*MPD =4000. The code 
TSC [1] as a reference has the minimum value of 
Det*MPD =540 and a maximum DS =2048. Code BBH [2] 
also has the maximum DS =2048 with medium 
Det*MPD =2940. 

Figure 3 displays the simulation results of the eight 16-state 
STTCs listed in Table 1 in the case where there are eight 
 

Table 1. Two transmit antennas, 16-state, QPSK STTCs designed in 
the listed reference. 

First three simple-error events 
Name Generation 

matrix Det PD MPD Det*MPD DS

TSC [1] 





200221
022100 12 16 45 540 2048

BBH [2] 





200221
022102 28 48 105 2,940 2048

YB [3] 





202122
021120 32 64 125 4,000 512

TC [4] 





200122
221002 32 64 125 4,000 512

VY [5] 





222120
201102 32 64 125 4,000 512

CYV [6] 





203220
321212 8 128 225 1,960 128

FVY [7] 





221220
200102 24 64 135 3,240 512

ZQWL [8] 





123222
121220 8 128 225 1,960 128
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propagation paths between each pair of transmit and receive 
antennas while the system has two transmit-antennas and one 
receive-antenna. We observe that the eight bit-error rate curves 
can be separated into three groups. In the first group, codes 
TSC and BBH have the worst performance; BBH is slightly 
better than TSC. The second group contains codes CYV, FVY, 
and ZQWL; they each have a similar performance. Codes YB, 
TC, and VY in the third group have the best performance 
among the other codes due to their maximum value of 
Det*MPD. Since TC has a better whole distance distribution, 
we see that code TC is slightly better than YB and VY, though 
they each have the same minimum Det*MPD and DS. For 
example, in the second simple-error event, the minimum 
Det*MPD of TC is 13500 but is 8100 for YB and VY. As 
shown, all the curves are approximately parallel, i.e., they have 
the same diversity. These simulation results agree well with the 
values of Det*MPD and DS computed in Table 1. 
 

 

Fig. 3. Performance comparison of the eight 16-state codes listed in
Table 1 for the case of eight multipaths and one receive 
antenna. 
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In order to more specifically observe the impact of 
propagation paths on the performance (diversity and coding 
gain) of SFTCs, the three representative codes TSC, TC, and 
CYV that are chosen, one from each of the three groups, 
respectively, are simulated again for the small P=2 and the 
large P=12. These simulation results are depicted in Fig. 4. 
From the analysis in section III, the correlation between 
adjacent subcarriers will be decreased when the number of 
multipaths increases from 2 to 12. In other words, the 
component exhibiting the constant property of the fading 
channel constructed by the consecutive subcarriers of OFDM 
blocks gradually reduces when the number of multipaths turns 
large and, simultaneously, when the independency between 

subcarriers increases. In Fig. 4, we first find the same result 
with example 1 in that the diversity of all the three codes is 
improved when the number of multipaths turns large. Also, the 
TC code has the best coding gain at every time, resulting from 
its maximum product of Det*MPD. Moreover, the impact of 
incorporating code construction with the fading channel 
characteristic on coding gain can be seen clearly by comparing 
the variation of the coding gain of the CYV code in two 
different channel conditions. While for the small multipath, 
P=2, the fading channels constructed by consecutive 
subcarriers mainly exhibit an approximately slow fading 
feature, and the main factor of determining the coding gain is 
the Det of the codes. Although code CYV, with a PD=128, is 
larger than TSC, the two codes have approximately the same 
 

 

Fig. 4. Performance comparison of codes TSC, CYV, and TC in 
two channel environments. 
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Fig. 5. Performance comparison of codes TSC, CYV, and TC 
with two receive antennas. 
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coding gain because CYV has a smaller Det=8 than TSC, 
while CYV is slightly better than TSC. However, when P=12, 
the independency of the fading channels becomes stronger, and 
the code CYV with a large PD can obtain more coding gain so 
that the coding gain of CYV is more than TSC. As shown in 
Fig. 4, the gap of the performance curves of TSC and CYV 
becomes wider when P=12. 

Evidently, the coding gain of SFTCs is affected by both code 
construction and the channel characteristics. But the channel 
characteristics are usually not available at the transmitter and 
are time varying. Hence, we propose that the optimization of 
SFTCs is to maximize the minimum product of Det and MPD. 
The above simulation results have well confirmed our 
theoretical analysis. For the case of two receive antennas, the 
simulations were performed and demonstrated in Fig. 5. 
Identical results are achieved. 

Example 3. Coding gain of 4-state SFTCs versus code 
constructions over MIMO-OFDM Systems 

This example investigates the impact of the constructions of 
4-state SFTCs and the channel multipaths on the coding gain. 

Table 2. Two transmit antennas, 4-states, QPSK STTCs. 

Name Generation 
matrix Det PD MPD Det* MPD DS

TSC [1] 





0012
1200  4 4 9 36 64

BBH [2] 





1022
3102  8 8 15 120 16

TC [4] 





0212
2120  4 24 35 196 8 

 

 

Fig. 6. Performance comparison of 4-state codes TSC, BBH, and
TC with four multipaths. 
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Differing from 16-state codes, 4-state codes have the same 
minimum values of rank, r=2, and symbol-wise Hamming 
distance, δ  = 2. The three representative 4-state codes TSC, 
BBH and TC are computed, and the corresponding Det, PD, 
MPD and Det*MPD, and DS are listed in Table 2. Two 
simulations are carried out for P=4 and P=12, and the results 
are shown in Figs. 6 and 7, respectively. Since code TC has the 
maximum minimum value of Det*MPD=144 in the two cases, 
it exhibits the best performance despite its small Det=4, 
validating our design criterion. 
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Fig. 7. Performance comparison of 4-state codes TSC, BBH, and 
TC with twelve multipaths. 
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Example 4. Robustness of SFTCs versus code constructions 

over MIMO-OFDM systems 

This example studies the robustness of SFTCs for various 
channel environments in MIMO-OFDM systems. To highlight 
the main problem, we assume that the channel between each 
pair of transmit and receive antennas has only two propagation 
paths with an equal average normalized power of 1/2. The time 
delay denotes the time difference arrived at the receiver of the 
second path relative to the first path. The three 16-state codes of 
TSC [1], CYV [6], and TC [4] are simulated for delay=200 ns 
(4Ts) and delay=600 ns (12Ts), respectively, where Ts=50 ns. 
Figure 8 shows the simulation results. We observe that the 
diversity is improved significantly when the delay of the 
multipath increases, and that the space-frequency trellis code 
with a large product of Det*MPD exhibits better coding gain 
than the others. Since the TC code has the maximum minimum 
value of Det*MPD=4000, it exhibits the best performance in 
the two channel situations. All the simulation results can be 
well explained by considering the correlation of the subcarriers 
of OFDM. When the delay turns large, the correlation between 
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adjacent subcarriers will be reduced so that the diversity can be 
improved. For the case of two receive antennas, the simulations 
are also achieved and are demonstrated in Fig. 9, which 
illustrates consistent results with Fig. 8. These results lead us to 
the conclusion that the SFTCs designed according to our 
criterion in this paper are robust against the time delay of 
multipaths, and the larger the product of Det*MPD for SFTCs, 
the better the robustness. 
 

 

Fig. 8. Impact of the time delay of multipaths on the performances
of SFTCs TSC, CYV, and TC. 
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Fig. 9. Performance comparison of SFTCs TSC, CYV and TC
with time delay=400 ns for two receive antennas. 
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Example 5. Impact of the channel model on the 

performance over MIMO-OFDM systems 
 
Up to now, we have assumed that the wireless propagation 

channel, established by a pair of transmit and receive antennas, 

has the same average power per tap, i.e., E[|hi , j(l)|2]=1/P, 
named as a uniform power channel model. But this may be far 
from what exists in real scenarios. Actually, based on a large 
number of experimental measurements, it is found that the 
power delay profile is an exponential function, which is 
expressed as 
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where ε is the average rms delay spread, Ts is the sampling 
interval, and a0 is the average power of the first tap, which has 
the relation 
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Substituting (25) and (26) into (14), the correlation between 
subcarriers is given as 
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For a comparison of (27) with (14), a numeric result is provided 
with ε=50 ns and P =12 as an example, which corresponds to a 
typical office environment and is specified as Hiperlan/2 model 
A in Europe’s wireless LAN standard. As illustrated in Fig. 10, 
the correlation between subcarriers becomes higher than the 
uniform power channel model. From our analysis, we expect  
 

 

Fig. 10. Comparison of the correlation of the uniform power channel 
with Hiperlan/2 model A. 
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Fig. 11. Performance comparison of TSC and TC codes in different
channel models. 
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that the performance should degrade in real scenarios. 

Instead of the uniform power channel model, the simulations 
of 16-state, two-transmit antennas, QPSK TSC and TC codes 
in Hiperlan/2 model A are carried out, depicted in Fig. 11. As 
shown, the performance degrades significantly in Hiperlan/2 
model A. Similar simulation results can be found in [16]. 

VI. Conclusion 

In this paper, the basic issues such as the design criterion of 
SFTCs and their robustness were investigated. The main idea is 
to decompose the correlated fading channel constructed by the 
consecutive subcarriers of OFDM into two independent 
components: one corresponds to the slow fading channel, the 
other to the fast fading channel. Hence, the design problem of 
SFTCs is to optimize the code in order to obtain a good 
performance simultaneously on both the slow fading and fast 
fading channels. In particular, we showed that the coding gain 
is mainly dominated by the minimum product of both the 
determinant and modified product distances. We also found 
that the SFTCs designed according to our criterion are robust 
against the time delay of the multipaths. 
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