• Title/Summary/Keyword: fast dynamics

Search Result 389, Processing Time 0.028 seconds

EFFECTS OF WAVE-PARTICLE INTERACTIONS ON DIFFUSIVE SHOCK ACCELERATION AT SUPERNOVA REMNANTS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.49-63
    • /
    • 2013
  • Nonthermal radiation from supernova remnants (SNRs) provides observational evidence and constraints on the diffusive shock acceleration (DSA) hypothesis for the origins of Galactic cosmic rays (CRs). Recently it has been recognized that a variety of plasma wave-particle interactions operate at astrophysical shocks and the detailed outcomes of DSA are governed by their complex and nonlinear interrelationships. Here we calculate the energy spectra of CR protons and electrons accelerated at Type Ia SNRs, using time-dependent, DSA simulations with phenomenological models for magnetic field amplification due to CR streaming instabilities, Alf$\acute{e}$enic drift, and free escape boundary. We show that, if scattering centers drift with the Alf$\acute{e}$en speed in the amplified magnetic fields, the CR energy spectrum is steepened and the acceleration efficiency is significantly reduced at strong CR modified SNR shocks. Even with fast Afv$\acute{e}$nic drift, DSA can still be efficient enough to develop a substantial shock precursor due to CR pressure feedback and convert about 20-30% of the SN explosion energy into CRs. Since the high energy end of the CR proton spectrum is composed of the particles that are injected in the early stages, in order to predict nonthermal emissions, especially in X-ray and ${\gamma}-ray$ bands, it is important to follow the time dependent evolution of the shock dynamics, CR injection process, magnetic field amplification, and particle escape. Thus it is crucial to understand the details of these plasma interactions associated with collisionless shocks in successful modeling of nonlinear DSA.

A Second Order Sliding Mode Control of Container Cranes with Unknown Payloads and Sway Rates (미지의 부하와 흔들림 각속도를 갖는 컨테이너 크레인의 2차 슬라이딩 모드 제어)

  • Baek, Woon-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.145-149
    • /
    • 2015
  • This paper introduces a sway suppression control for container cranes with unknown payloads and sway rates. With no priori knowledge concerning the magnitude of payload mass and sway rate, the proposed control maintains superior sway suppressing and trolley positioning against external disturbances. The proposed scheme combines a second order sliding mode control and an adaptive control to cope with unknown payloads. A second order sliding mode control without feedback of the sway rate is first designed, which is based on a class of feedback linearization methods for stabilization of the under-actuated sway dynamics of the container. Under applicable restrictions of the magnitude of payload inertia and sway rate, a linear regression model is obtained, and an adaptive control with a payload estimator is then designed, which is based on Lyapunov stability methods for the fast attenuation of trolley oscillations in the vicinity of the target position. The asymptotic stability of the overall closed-loop system is assured irrespective of variations of rope length. Simulation are shown in the existence of initial sway and external wind disturbances.

Algorithmic Proposal of Optimal Loading Pattern and Obstacle-Avoidance Trajectory Generation for Robot Palletizing Simulator (로봇 팔레타이징 시뮬레이터를 위한 적재 패턴 생성 및 시변 장애물 회피 알고리즘의 제안)

  • Yu, Seung-Nam;Lim, Sung-Jin;Kim, Sung-Rak;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1137-1145
    • /
    • 2007
  • Palletizing tasks are necessary to promote efficient storage and shipping of boxed products. These tasks, however, involve some of the most monotonous and physically demanding labor in the factory. Thus, many types of robot palletizing systems have been developed, although many robot motion commands still depend on the teach pendant. That is, the operator inputs the motion command lines one by one. This is very troublesome and, most importantly, the user must know how to type the code. We propose a new GUI(Graphic User Interface) for the palletizing system that is more convenient. To do this, we used the PLP "Fast Algorithm" and 3-D auto-patterning visualization. The 3-D patterning process includes the following steps. First, an operator can identify the results of the task and edit them. Second, the operator passes the position values of objects to a robot simulator. Using those positions, a palletizing operation can be simulated. We chose a widely used industrial model and analyzed the kinematics and dynamics to create a robot simulator. In this paper we propose a 3-D patterning algorithm, 3-D robot-palletizing simulator, and modified trajectory generation algorithm, an "overlapped method" to reduce the computing load.

Fluttering Characteristics of Free-falling Plates (자유낙하하는 판의 fluttering 특성 연구)

  • Hong, Seulki;Chae, Seokbong;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.2
    • /
    • pp.33-40
    • /
    • 2017
  • Abstract In the present study, the characteristics of kinematics and dynamics in the fluttering motion of free-falling plates are investigated at Reynolds number of $10^5$. We record quasi-two-dimensional trajectories of free-falling plates with and without superhydrophobic coating using high-speed camera, and compute the drag and lift forces by trajectory analysis. Translational and angular velocities are modeled as harmonic functions with specific phase differences. In particular, periodic mass elevations near turning points are explained using the suggested models. At each turning point, a sudden drop in lift and a rapid increase in drag occur simultaneously due to fast increase in angle of attack. However, the lift is increased over the buoyancy-corrected weight of plate during gliding flight, resulting in periodic mass elevations near turning points. Superhydrophobicity is shown to increase lift but to reduce drag on a fluttering plate, resulting in the decrease of mean descent speed.

Flight Control Test of Quadrotor-Plane with Hybrid Flight Mode of VTOL and Fast Maneuverability (Hybrid 비행 모드를 갖는 Quadrotor-Plane의 비행제어실험)

  • Kim, Dong-Gyun;Lee, Byoungjin;Lee, Young Jae;Sung, Sangkyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.759-765
    • /
    • 2016
  • This paper presents the principle, dynamics modeling and control, hardware implementation, and flight test result of a hybrid-type unmanned aerial vehicle (UAV). The proposed UAV was designed to provide both hovering and fixed-wing type aerodynamic flight modes. The UAV's flight mode transition was achieved through the attitude transformation in pitch axis, which avoids a complex rotor tilt mechanism from a structural and control viewpoint. To achieve this, a different navigation coordinate was introduced that avoids the gimbal lock in pitch singularity point. Attitude and guidance control algorithms were developed for the flight control system. For flight test purposes, a quadrotor attached with a tailless fixed-wing structure was manufactured. An onboard flight control computer was designed to realize the navigation and control algorithms and the UAV's performance was verified through the outdoor flight tests.

Survey on ultrafast time resolved X-ray diffraction measurements of crystal structure (X선의 초고속 결정구조 측정법)

  • Koo, Y.D.;Kim, Y.C.;Oh, C.S.
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.13-16
    • /
    • 2014
  • We have surveyed on significant progress in recent developments of accelerator-based pulsed X-ray sources has offered the opportunity for time-resolved studies on fast structure dynamics on the nanometer scale. The required and currently available techniques for time resolved X-ray diffraction measurements using the third-generation synchrotron radiation sources are summarized. Ultrafast X-ray experimental techniques are discussed for femtosecond studies at future synchrotron radiation sources.

HILS(Hardware-In-the-Loop Simulation) Development of a Steering HILS System (전동식 동력 조향 장치 시험을 위한 HILS(Hardware-In-the-Loop Simulation) 시스템 개발)

  • 류제하;노기한;김종협;김희수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.105-111
    • /
    • 1999
  • The paper presents development of a Hardware-In-the-Loop simulation (HILS) system for the purpose of testing performance, stability, and reliability of an electronic power steering system(EPS). In order to realistically test an EPS by the proposed HILS apparatus, a simulated uniaxial dynamic rack force is applied physically to the EPS hardware by a pnumatic actuator. An EPS hardware is composed of steering wheel &column, a rack & pinion mechanism, andas motor-driven power steering system. A command signal for a pneumatic rack-force actuator is generated from the vehicle handling lumped parameter dynamic model 9software) that is simulated in real time by using a very fast digital signal processor. The inputs to the real-time vehicle dynamic simulation model are a constant vehicle forward speed and from wheel steering angles driven through a steering system by a driver. The output from a real-time simulation model is an electric signal that is proportional to the uniaxial rack force. The vehicle handling lumped parameter dynamic model is validated by a fully nonlinear constrained multibody vehicle dynamic model. The HILS system simulation results sow that the proposed HILS system may be used to realistically test the performance stability , and reliability of an electronic power steering system is a repeated way.

  • PDF

Fire Protection System for Ubiquitous Environment (유비쿼터스 환경을 위한 소방시스템)

  • Kang, Won-Chan;Kim, Nam-Oh;Min, Wan-Ki;Shin, Suck-Doo;Kim, Young-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.141-147
    • /
    • 2005
  • In this paper, We are going to propose the fire protection system with using CAN(Controller Area Network). The larger, higher and deeper buildings are, the more dangerous people are when fire happens. We should be aware of the problems of prior fire protection system. Therefore, we construct embedded system based on CAN communication that is capable of N:N communication, and build independent fire protection system. If the fire is occurred on the building, the problem is that how fast we can detect the fire and put off it by using available system. this is major factor that reduces damage of our wealth. therefore in this studies We would like to design more stable system than current system. this system that is based on CAN communication which is available N:N communication constructs and is designed to compensate for each fault so that our aim is to reduce the line of system and cost of installation and to suppose future type fire protection system. We are simulated by NIST FDS(Fire Dynamics Simulator) to prove the efficiency of this system.

Multicopter Position Control using Singular Perturbation based Dynamic Model Inversion (특이섭동 모델역변환을 이용한 멀티콥터 위치제어 연구)

  • Choi, Hyoung Sik;Jung, Yeondeuk;Lee, Jangho;Ryu, Hyeok;Lee, Sangjong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.276-283
    • /
    • 2017
  • This paper presents position control of multicopter using nonlinear dynamic model inversion in singular perturbation. Multicopter dynamics are developed and separated into the fast time-scale variables, related with the inner-loop design, and the slow time-scale variables, related with the outer-loop design. The final design is evaluated in 6-DOF simulation. The results show accurate position tracking performance.

Characteristics of tidal turbulence near the bottom at a coastal trench in Tongyoung, Korea

  • Kim, Yonghae;Hong, Chul-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.435-446
    • /
    • 2014
  • Tidal turbulence was examined using three-dimensional tidal velocity data observed at a trench offshore of Tongyoung, Korea. The kinetic energy and intensity, including the variation period of the flow velocity and direction, were used to investigate the relationships between tidal turbulence and fishing gear dynamics, including the effects of swimming fish during fishing operations. As the resultant velocity increased from 0.2 to 0.9 m/s, the kinetic energy also significantly increased, while the turbulence intensity decreased from 50 to 10%. Tidal flow in strong flow fields displayed shorter periods of between 4 and 10 s, as determined by fast Fourier transform, the global wavelet method, and peak event analysis, and the periods were compared with the period of response to swimming fish and to oscillation of fishing gear. As mean velocity increased, velocity amplitude also increased from 0.1 to 0.6 m/s, and its directional amplitude changed markedly from 20 and $90^{\circ}$. Our study suggests that tidal turbulence can influence fish behavior or fishing gear geometry during fishing operations, although our analysis considered only a limited area. In future work, observations should be carried out over a more extensive depth and area.