• Title/Summary/Keyword: fast Fourier transforms

Search Result 31, Processing Time 0.02 seconds

A Pipelined Hadamard Transform Processor (파이프라인 방식에 의한 아다마르 변환 프로세서)

  • 황영수;윤대희;차일환
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1617-1623
    • /
    • 1989
  • The introduction of the fast Fourier transform(FFT),an efficient computational algorithm for the discrete Fourier transform(DFT) by Cooley and Tukey(1965), has brought to the limelight various other discrete transforms. Some of the analog functions from which these transforms have been derived date back to the early 1920's, for example, Walsh functions (Walsh, 1923) and Hadamard Transform(Enomoto et al, 1965). Fast algorithms developed for the forward transform are equally applicable, exept for minor changes, to the inverse transform. In this paper, we present a simple pipelined Hadamard matrix(HM) which is used to develop a fast algorithm for the Hadamard Processor (HP). The Fast Hadamard Transform(FHT) can be derived using matrix partitioning techniques. The HP system is incorporated through a modular design which permits tailoring to meet a wide range of video data link applications. Emphasis has been placed on a low cost, a low power design suitable for airbone system and video codec.

  • PDF

Thermal Analysis of Automotive Disc Brake Using FFT-FEM (FFT-FEM을 이용한 자동차용 디스크 브레이크의 열 해석)

  • Choi, Ji-Hoon;Kim, Do-Hyung;Lee, In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1253-1260
    • /
    • 2001
  • Transient thermal analysis of a three-dimensional axisymmetric automotive disk brake is presented in this paper. Temperature fields are obtained using a hybrid FFT-FEM scheme that combines Fourier transform techniques and finite element method. The use of a fast Fourier transform algorithm can avoid singularity problems and lead to inexpensive computing time. The transformed problem is solved with finite element scheme for each frequency domain. Inverse transforms are then performed for time domain solution. Numerical examples are presented for validation tests. Comparisons with analytical results show very good agreement. Also, a 3-D simulation, based upon an automotive brake disk model is performed.

FFT-based Spectral Analysis Method for Linear Discrete Structural Dynamics Models with Non-Proportional Damping (비 비례적 감쇠를 갖는 선형 이산 구조동력학 모델에 대한 FFT-활용 스펙트럴해석법)

  • Lee U-sik;Cho Joo-yong
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.63-68
    • /
    • 2006
  • This paper proposes a fast Fourier transform(FFT)-based spectral analysis method(SAM) for the dynamic responses of the linear discrete dynamic models with non-proportional damping. The SAM was developed by using discrete Fourier transform(DFT)-theory. To verify the proposed SAM, a three-DOF system with non-proportional viscous damping is considered as an illustrative example. The present SAM is evaluated by comparing the dynamic responses obtained by SAM with those obtained by Runge-Kutta method.

An Analysis of Partial Discharge signal Using Wavelet Transforms (웨이블렛 변환을 이용한 부분 방전 신호 분석)

  • 박재준;장진강;임윤석;심종탁;김재환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.169-172
    • /
    • 1999
  • Recently, the wavelet transform has been a new and powerful tool for signal processing. It is more suitable specially for the feature extraction and detection of non-stationary signals than traditional methods such as, the Fourier Transform(FT), the Fast Fourier Transform(FFT) and the Least Square Method etc. because of the characteristic of the multi-scale analysis and time-frequency domain localization. The wavelet transform has been developed for the analysis of PD pulse signal to raise in the progress of insulation degradation. In this paper, the wavelet transform was applied to one foundational method for feature extraction. For the obtain experimental data, a computer-aided partial discharge measurement system with a single acoustic sensor was used. If we are applying to the neural network method the accumulated data through the extracted feature, it is expected that we can detect the PD pulse signal in the insulation materials on the on-line.

  • PDF

Fast DFT Matrices Transform Based on Generalized Prime Factor Algorithm

  • Guo, Ying;Mao, Yun;Park, Dong-Sun;Lee, Moon-Ho
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.449-455
    • /
    • 2011
  • Inspired by fast Jacket transforms, we propose simple factorization and construction algorithms for the M-dimensional discrete Fourier transform (DFT) matrices underlying generalized Chinese remainder theorem (CRT) index mappings. Based on successive coprime-order DFT matrices with respect to the CRT with recursive relations, the proposed algorithms are presented with simplicity and clarity on the basis of the yielded sparse matrices. The results indicate that our algorithms compare favorably with the direct-computation approach.

Sleep Disturbance Classification Using PCA and Sleep Stage 2 (주성분 분석과 수면 2기를 이용한 수면 장애 분류)

  • Shin, Dong-Kun
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.27-32
    • /
    • 2011
  • This paper presents a methodology for classifying sleep disturbance using electroencephalogram (EEG) signal at sleep stage 2 and principal component analysis. For extracting initial features, fast Fourier transforms(FFT) were carried out to remove some noise from EEG signal at sleep stage 2. In the second phase, we used principal component analysis to reduction from EEG signal that was removed some noise by FFT to 5 features. In the final phase, 5 features were used as inputs of NEWFM to get performance results. The proposed methodology shows that accuracy rate, specificity rate, and sensitivity were all 100%.

Connection between Fourier of Signal Processing and Shannon of 5G SmartPhone (5G 스마트폰의 샤논과 신호처리의 푸리에의 표본화에서 만남)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.69-78
    • /
    • 2017
  • Shannon of the 5G smartphone and Fourier of the signal processing meet in the sampling theorem (2 times the highest frequency 1). In this paper, the initial Shannon Theorem finds the Shannon capacity at the point-to-point, but the 5G shows on the Relay channel that the technology has evolved into Multi Point MIMO. Fourier transforms are signal processing with fixed parameters. We analyzed the performance by proposing a 2N-1 multivariate Fourier-Jacket transform in the multimedia age. In this study, the authors tackle this signal processing complexity issue by proposing a Jacket-based fast method for reducing the precoding/decoding complexity in terms of time computation. Jacket transforms have shown to find applications in signal processing and coding theory. Jacket transforms are defined to be $n{\times}n$ matrices $A=(a_{jk})$ over a field F with the property $AA^{\dot{+}}=nl_n$, where $A^{\dot{+}}$ is the transpose matrix of the element-wise inverse of A, that is, $A^{\dot{+}}=(a^{-1}_{kj})$, which generalise Hadamard transforms and centre weighted Hadamard transforms. In particular, exploiting the Jacket transform properties, the authors propose a new eigenvalue decomposition (EVD) method with application in precoding and decoding of distributive multi-input multi-output channels in relay-based DF cooperative wireless networks in which the transmission is based on using single-symbol decodable space-time block codes. The authors show that the proposed Jacket-based method of EVD has significant reduction in its computational time as compared to the conventional-based EVD method. Performance in terms of computational time reduction is evaluated quantitatively through mathematical analysis and numerical results.

A Computational Complexity Reduction Scheme for SLM Based OFDM Communication Systems (SLM 기반의 OFDM 통신 시스템을 위한 계산 복잡도 저감 기법)

  • Cho, Soo-Bum;Hyun, Kwang-Min;Park, Sang-Kyu
    • Journal of Internet Computing and Services
    • /
    • v.13 no.2
    • /
    • pp.13-20
    • /
    • 2012
  • SLM (Selected Mapping) is an efficient PAPR (Peak-to-Average Power Ratio) reduction scheme without transmitted signal distortion in OFDM (Orthogonal Frequency Division Multiplexing) systems. However, enormous IFFTs (Inverse Fast Fourier Transforms) are needed to generate sufficient candidate OFDM signals, which cause the SLM to become quite complex. In this paper, we propose a new SLM scheme that replaces the IFFT operations with a conversion of the first candidate OFDM signal. The proposed scheme significantly reduces computational complexity, while it shows almost the same PAPR performance as the conventional SLM scheme.

A SPECTRAL ANALYSIS METHOD FOR SPECTRAL ELEMENT MODELS (스펙트럴 요소 모델을 이용한 스펙트럴 해석법)

  • Cho J.;Yoon D.;Hwang I.;Lee U.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.409-414
    • /
    • 2005
  • In the literatures, the FFT-based SAM has been well applied to the computation of the steady-state responses of discrete dynamic systems. In this paper, a fast fourier transforms (FFT)-based spectral analysis method (SAM) is proposed fur the dynamic analysis of spectral element models subjected to the non-zero initial conditions. However, the FFT-based SAM has not yet been developed for the continuous systems represented by the spectral element model.

  • PDF

Efficient Computation of the DFT and IDFT in Communication Systems Using Discrete Multitone Modulation

  • Fertner, Antoni;Hyll, Mattias;Orling, Anders
    • Journal of Communications and Networks
    • /
    • v.1 no.2
    • /
    • pp.86-88
    • /
    • 1999
  • The Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier Transform (IDFT) are commonly used in signal processing applications, in particular in digital communication sys-tems using the multi-carrier modulation principle. In such systems an IDFT is computed at the transmitter end, and a DFT at the re-ceiver end. This paper examines a technique of computations, for which only negligible differences appear between the DFT and the IDFT calculations while the number of arithmetic operations re-quired is substantially reduced. This offers significant advantages for the design of an IDFT/DFT processor for Discrete Multitone(DMT) systems.

  • PDF