Journal of the Korean Data and Information Science Society
/
제25권5호
/
pp.971-986
/
2014
동시에 여러 개의 가설검정 수행시 귀무가설이 참일 경우 귀무가설을 기각할 확률이 커지는 문제가 발생한다. 이러한 다중검정 문제 해결을 위해 여러 연구에서는 가설검정시 필요한 집단별 오류율(FWER; family-wise error rate), 위발견율 (FDR; false discovery rate) 또는 위비발견율 (FNR; false nondiscovery rate) 과 통계량을 고려하여 검정력을 높이고자 하였다. 본 연구에서는 T 통계량, 수정된 T 통계량, 그리고 LPE (local pooled error) 통계량 기반 P값을 이용한 Bonferroni (1960) 방법, Holm (1979) 방법, Benjamini와 Hochberg (1995) 방법과 Benjamini와 Yekutieli (2001) 방법 그리고 Z 통계량 기반 Sun과 Cai (2007) 방법을 고찰하고 모의실험을 통해 다중검정 능력을 비교하였다. 또한 실제 데이터로 애기장대 유전자 발현 데이터에 대해 여러 가지 다중검정법을 통해 유의한 유전자들을 선별하였다.
일반적으로 약제 용량 결정 연구는 대조군과 여러 용량 수준을 비교하여 유효성과 안전성을 동시에 만족하는 약물의 치료 범위(therapeutic window)를 찾아내는 데에 관심이 있다. 이 논문에서는 안전성과 유효성을 동시에 만족하는 용량 결정을 위하여 선형 위치(linear placement)에 점수함수(score function)를 이용한 비모수적 검정법을 제안하였다. 또한 Monte Carlo 모의실험을 통하여 기존의 모수적 방법들과 검정력(power)과 FWE(family-wise error rate)를 비교하였다.
Communications for Statistical Applications and Methods
/
제19권1호
/
pp.33-45
/
2012
신약 개발 연구 또는 임상시험에서 개발된 약이 0용량 대조군과 비교해 효과 차이가 있는 가장 작은 용량을 최소 효과 용량(MED)이라 한다. 본 논문에서는 다중 그룹 상황에서 동시적(simultaneous)으로 각 각 그룹의 최소 효과 용량을 확인하기 위하여 위치(placement)에 기초한 비모수적 방법을 제시하였다. 또한 Monte Carlo 모의실험을 통하여 기존에 제시된 검정법과 본 논문에서 제안한 검정법의 검정력(power)과 FWE(Family-wise Error Rate)를비교하였다.
반복이 있는 랜덤화 블록 모형(randomized block design with replications)에서 비모수 다중비교 방법으로는 Mack과 Skillings (Technometrics, 23, 171-177, 1981) 방법이 있다. 이 방법은 각 블록의 처리에서 반복된 관측값 대신 관측값들의 평균을 이용해 순위를 매기기 때문에 정보의 손실이 발생할 가능성이 있다. 이를 보완하기 위해 본 논문에서는 Hodges와 Lehmann (The Annals of Mathematical Statistics, 33, 482-497, 1962)이 제안한 정렬방법과 Chung과 Kim (Communications for Statistical Applications and Methods, 14, 551-560, 2007)이 제안한 결합위치 검정법을 확장하여 반복이 있는 랜덤화 블록 모형에서 새로운 비모수 다중비교 방법을 제시하였다. 또한 몬테카를로 모의실험(Monte Carlo simulation)을 통해 모수적 방법과 기존의 비모수적 방법과의 family wise error rate (FWE)와 검정력을 비교하였다.
일원배치모형에서 세 개 이상의 처리 간에 차이 유무를 검정하여 귀무가설이 기각됐다면, 어떤 것이 통계적으로 유의한 결과인지 확인하기 위해서는 다중비교 방법이 필요하다. 대표적인 모수적 검정법으로는 Tukey (1953), 비모수적 검정법으로는 Kruskal-Wallis (1952)의 검정에 기초한 방법이 있다. 이 방법은 전체 자료에 대한 혼합표본에 순위를 부여한 후 세 개 이상의 각 처리별 평균 순위를 이용한 검정방법이다. 본 논문에서는 Chung과 Kim (2007)이 제안한 결합위치 검정법을 확장하여 일원배치모형에서 새로운 비모수적 다중비교 방법을 제안하였다. 또한 모의실험(Monte Carlo simulation)을 통해 기존의 검정방법들과 제안한 방법의 family wise error rate (FWE)와 검정력을 비교하였다.
Communications for Statistical Applications and Methods
/
제19권6호
/
pp.899-904
/
2012
High-dimensional categorical data models with small sample sizes have not been used extensively in genomic sequences that involve count (or discrete) or purely qualitative responses. A basic task is to identify differentially expressed genes (or positions) among a number of genes. It requires an appropriate test statistics and a corresponding multiple testing procedure so that a multivariate analysis of variance should not be feasible. A family wise error rate(FWER) is not appropriate to test thousands of genes simultaneously in a multiple testing procedure. False discovery rate(FDR) is better than FWER in multiple testing problems. The data from the 2002-2003 SARS epidemic shows that a conventional FDR procedure and a proposed test statistic based on a pseudo-marginal approach with Hamming distance performs better.
Communications for Statistical Applications and Methods
/
제27권1호
/
pp.141-148
/
2020
We consider estimating the proportion of true null hypotheses in multiple testing problems. A traditional multiple testing rate, family-wise error rate is too conservative and old to control type I error in multiple testing setups; however, false discovery rate (FDR) has received significant attention in many research areas such as GWAS data, FMRI data, and signal processing. Identify differentially expressed genes in microarray studies involves estimating the proportion of true null hypotheses in FDR procedures. However, we need to account for unknown dependence structures among genes in microarray data in order to estimate the proportion of true null hypothesis since the genuine dependence structure of microarray data is unknown. We compare various procedures in simulation data and real microarray data. We consider a hidden Markov model for simulated data with dependency. Cai procedure (2007) and a sliding linear model procedure (2011) have a relatively smaller bias and standard errors, being more proper for estimating the proportion of true null hypotheses in simulated data under various setups. Real data analysis shows that 5 estimation procedures among 9 procedures have almost similar values of the estimated proportion of true null hypotheses in microarray data.
In genetic association studies with high-dimensional genomic data, multiple group testing procedures are often required in order to identify disease/trait-related genes or genetic regions, where multiple genetic sites or variants are located within the same gene or genetic region. However, statistical testing procedures based on an individual test suffer from multiple testing issues such as the control of family-wise error rate and dependent tests. Moreover, detecting only a few of genes associated with a phenotype outcome among tens of thousands of genes is of main interest in genetic association studies. In this reason regularization procedures, where a phenotype outcome regresses on all genomic markers and then regression coefficients are estimated based on a penalized likelihood, have been considered as a good alternative approach to analysis of high-dimensional genomic data. But, selection performance of regularization procedures has been rarely compared with that of statistical group testing procedures. In this article, we performed extensive simulation studies where commonly used group testing procedures such as principal component analysis, Hotelling's $T^2$ test, and permutation test are compared with group lasso (least absolute selection and shrinkage operator) in terms of true positive selection. Also, we applied all methods considered in simulation studies to identify genes associated with ovarian cancer from over 20,000 genetic sites generated from Illumina Infinium HumanMethylation27K Beadchip. We found a big discrepancy of selected genes between multiple group testing procedures and group lasso.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.