• Title/Summary/Keyword: failure parameters

Search Result 1,945, Processing Time 0.026 seconds

Study on the Undrained Strength Characteristics of Fiber Mixed Clay (섬유혼합 점토의 비배수 강도 특성에 대한 연구)

  • 박영곤;장병욱
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.382-387
    • /
    • 1998
  • Triaxial compression tests were run to study on the undrained strength characteristics of fiber mixed kaolin clay(Hadong). The influence of various test parameters such as amount and aspect ratio(ratio of length to diameter) of fiber, confining stress was also investigated. Test results showed that the increase in aspect ratio was increased in deviator stress at failure, but no effect on pore water pressure at failure. Deviator stress at failure was also increased at 0.5% mixing ratio(weight fraction of fiber to that of soil solid) of fiber but it was, thereafter, decreased and wits reached to constant after 2% mixing ratio. On the contrary, Pore water pressure at failure was increased as mixing ratio of fiber was greater than 1%. Deviator stress and pore water pressure of both clay and fiber mixed clay(FMC) at failure were increased as confining stress was increased. Deviator stress of FMC at failure was about 10% larger than that of clay, but pore water pressure of FMC at failure was almost similar to that of clay.

  • PDF

Sensitivity of the $217Plus^{TM}$ System Model to Failure Causes (고장요인들에 대한 $217Plus^{TM}$ 시스템 모형의 민감도)

  • Jeon, Tae-Bo
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.387-398
    • /
    • 2011
  • $217Plus^{TM}$, a newly developed as a surrogate of the MIL-HDBK-217, may be widely applied for reliability predictions of electronic systems. In this study, we performed sensitivity study of the $217Plus^{TM}$ system model to various parameters. Specific attention was put to logistics model and its behavior has been examined in terms of non-component failure causes. We first briefly explained the $217Plus^{TM}$ methodology with system level failure rate evaluation. We then applied experimental designs with several failure causes as factors. We used an orthogonal array with three levels of each parameter. Our results indicate that cannot duplicate, induced, and wear-out causes have dominant effects on the system failures and design, parts, and system management have much less but a little strong effects. The results in this study not only figure out the behavior of the predicted failure rate as functions of failure causes but provide meaningful guidelines for practical applications.

Economic design of consecutive k-out-of-n : F system (Consecutive k-out-of-n : F 시스템의 경제적 설계)

  • Yun, Won-Young;Kim, Gue-Rae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.2
    • /
    • pp.128-135
    • /
    • 2000
  • This paper considers a consecutive k-out-of-n:F system when the failure of a component in the system induces higher failure rate of the preceding survivor. The reliability, mean time to failure(MTTF), and average failure number of a consecutive k-out-of-n:F system are obtained, when the failure of a component increases the failure rate of the survivor which is working just before the failed component. Then the optimal number of consecutive failed components to minimize this long run average cost rate can be obtained. An example is considered to calculate the reliability, MTTF and average failure number of the system. And two procedures that find the optimal number of consecutive failed components are studied. Then, various cases of system parameters are also studied.

  • PDF

Comparison of Input Data for Numerical Analysis of Rock Structures (암반구조물의 수치해석을 위한 입력자료지 비교분석)

  • 장명환;양형식
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.221-229
    • /
    • 1999
  • Parameters of failure criteria, compressive strength and elastic modulus are most important for design and stability analysis of rock structure using numerical analysis. In this study, it suggests that the application of input data for numerical analysis by the literature study and the result of the 150 sets of triaxial compressive test. There was much different between parameters of failure criterion suggested by Hoek-Brown and parameters resulted from the analysis using 150 sets of triaxial compressive test. But the converting equations of compressive strength have had an interrelation with RMR. However, the converting of elastic of elastic modulus were different as chosen of equation, and the equation by Nicholson et at was more useful than others.

  • PDF

A study on the change of strength parameters reinforced rock bolt in the ground around tunnel (록볼트로 보강된 터널주변지반의 강도정수 변화에 대한 연구)

  • Kim, Sang-Hwan;Bang, Gyu-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.1
    • /
    • pp.51-61
    • /
    • 2005
  • In general the strength parameter of the ground will be changed by reinforcing the ground around tunnel. In this case, the concept of tunnel design, such as supporting system, excavation, lining and so on, should be modified based on the failure criteria or the ground changed by the reinforcement. This paper presents the variation mechanism of strength parameters and new failure criteria of the reinforced ground. In order to perform this research, theoretical and experimental works were carried out. It was clearly founded that the cohesion of strength parameters is only increased by reinforcement of ground, especially by rock bolting.

  • PDF

The optimal system for series systems with warm standby components and a repairable service station

  • Rashad, A.M.;El-Sherbeny, M.S.;Gharieb, D.M.
    • International Journal of Reliability and Applications
    • /
    • v.11 no.2
    • /
    • pp.89-106
    • /
    • 2010
  • This paper deals with the reliability and availability characteristics of three different series system configurations with warm standby components and a repairable service station. The failure time of the primary and warm standby are assumed to be exponentially distributed with parameters ${\lambda}$ and ${\alpha}$ respectively. The repair time distribution of each server is also exponentially distributed with parameter ${\mu}$. The breakdown time and the repair time of the service station are also assumed exponentially distributed with parameters ${\gamma}$ and ${\beta}$ respectively. We derive the reliability dependent on time, availability dependent on time, the mean time to failure, $MTTF_i$, and the steady-state availability $A_i$(${\infty}$) for three configurations and perform comparisons. Comparisons are made for specific values of distribution parameters and of the cost of the components. The three configurations are ranked based on: $MTTF_i$, $A_i$(${\infty}$), and $C_i/B_i$ where $B_i$ is either $MTTF_i$ or $A_i$(${\infty}$).

  • PDF

Effect of FRP parameters in strengthening the tubular joint for offshore structures

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Ocean Systems Engineering
    • /
    • v.8 no.4
    • /
    • pp.409-426
    • /
    • 2018
  • This paper presents the strengthening of tubular joint by wrapping Carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP). In this study, total number of layers, stacking sequence and length of wrapping are the different parameters involved when fiber reinforced polymers (FRP) composites are used for strengthening. For this, parameters where varied and results were compared with the reference joint. The best stacking sequence was identified which has the highest value in ultimate load with lesser deflections. For determining the best stacking sequence, numerical investigation was performed on CFRP composites; length of wrapping and number of layers were fixed. Later, the studies were focused on CFRP and GFRP strengthened joint by varying the total number of layers and length of wrapping. An attempt was done to propose a parametric equation from multiple regression analysis, which can be used for CFRP strengthened joints. Hashin failure criteria was used to check the failure of composites. Results revealed that FRP was having a greater influence in the load bearing capacity of joints, and in reducing the deflections and stresses of joint under axial compressive loads. It was also seen that, CFRP was far better than GFRP in reducing the stresses and deflection.

Failure analysis of the T-S-T switch network

  • Lee, Kang-Won
    • Korean Management Science Review
    • /
    • v.11 no.1
    • /
    • pp.187-196
    • /
    • 1994
  • Time-Space-Time(T-S-T) switching network is modeled as a graceful degrading system. Call blocking probability is defined as a measure of performance. Several performance related measures are suggested under the presence of failure. An optimization model is proposed, which determines optimal values of system parameters of the switching network.

  • PDF

A Three Dimensional Study on the Probability of Slope Failure(II) (사면(斜面)의 삼차원(三次元) 파괴확률(破壞確率)에 관(關)한 연구(硏究)(II))

  • Kim, Young-Su;Tcha, Hong-Jun;Jung, Sung-Kwan
    • Journal of Industrial Technology
    • /
    • v.3
    • /
    • pp.53-63
    • /
    • 1983
  • The probability of failure is used to analyze the reliability of three dimensional slope failure, instead of conventional factor of safety. The strength parameters are assumed to be normal variated and beta variated. These are interval estimated under the specified confidence level and maximum likelihood estimation. The pseudonormal and beta random variables are generated using the uniform probability transformation method according to central limit theorem and rejection method. By means of a Monte-Carlo Simulation, the probability of failure is defined as; Pf=M/N N : Total number of trials M : Total number of failures Some of the conclusions derived from the case study include; 1. Three dimensional factors of safety are generally much higher than 2-D factors of safety. However situations appear to exist where the 3-D factor of safety can be lower than the 2-D factor of safety. 2. The F3/F2 ratio appears to be quite sensitive to c and ${\phi}$ and to the shape of the 3-D shear surface and the slope but not to be to the unit weight of soil. 3. In cases that strength parameters are assumed to be normal variated and beta variated, the relationships between safety factor and the probability of failure are fairly consistent, regardless of the shape of the 3-D shear surface and the slope. 4. As the c-value is increased, the probability of failure for the same safety factor is increased and as the ${\phi}-value$ is increased, the probability of failure for the same safety factor is decreased.

  • PDF

The Effect of Scale Parameter in Designing Reliability Demonstration Test for Lognormal Lifetime Distribution (대수정규 수명분포를 갖는 제품에 대한 신뢰성 입증시험에서 척도모수의 영향분석)

  • Kwon, Young Il
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.53-57
    • /
    • 2014
  • In the fields of reliability application, the most commonly used test methods for reliability demonstration are zero-failure acceptance tests since they require fewer test samples and less test time compared to other test methods that guarantee the same reliability with a given confidence level. For products with lognormal lifetime distribution, the value of scale parameter is usually assumed to be known in designing reliability demonstration tests. It is important to select correct values of scale parameters to guarantee the specified reliability with given confidence level exactly. The effect of using wrong values of scale parameters in designing reliability demonstration test for products with lognormal lifetime distribution is examined and selecting proper values of scale parameters for conservative reliability demonstration is discussed.