• Title/Summary/Keyword: failure detection and isolation

Search Result 40, Processing Time 0.029 seconds

Actuator Fault Detection and Isolation Method for a Hexacopter (헥사콥터의 구동기 고장 검출 및 분리 방법)

  • Park, Min-Kee
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.266-272
    • /
    • 2019
  • Multicopters have become more popular since they are advantageous in their ability to take off and land vertically. In order to guarantee the normal operations of such multicopters, the problem of fault detection and isolation is very important. In this paper, a new method for detecting and isolating an actuator fault of a hexacopter is proposed based on the analytical approach. The residual is newly defined using the angular velocities of actuators estimated by the mathematical model and an actuator fault is detected comparing the residuals to a threshold. And a fault is isolated combining a dynamic model and generated residuals when a fault is detected. The proposed method is a simple, but effective technique because it is based on mathematical model. The results of the computer simulation are also given to demonstrate the validity of the proposed algorithm in case of a single failure.

Sensor Fault Detection and Isolation of a Turbojet Engine Using Neural Network (신경망을 이용한 터보제트 엔진의 고장 진단)

  • Kim, Jong-Sun;Lee, Kang-Woong;Kim, Jin-Gon;Boo, Joon-Hong;Yoo, Sang-Sin;Min, Seong-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.3 no.1
    • /
    • pp.32-43
    • /
    • 1999
  • In this paper, we designed an intelligent fault detection and isolation algorithm for improving reliability of turbojet engine controller. The proposed method uses multilayer neural network to detect and accommodate sensor failure from the functional relationship of dissimilar sensors. Signals of failure sensors are estimated from neural network trained by backpropagation algorithm. Simulation results on the state-space model of a turbojet engine illustrate that the proposed algorithm achieves the desired performance.

  • PDF

A Study on the Algebraic Analysis of FDI(failure detection and isolation) in Bilinear System (쌍일차계에 대한 FDI(고장검출 및 분리)의 대수적인 해석에 관한 연구)

  • In, Don-Gi;Cho, Young-Ho;Oh, Min-Hwan;Kim, Jae-Il;Chae, Young-Mu;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2627-2629
    • /
    • 2000
  • This paper introduces the design of a reduced order observer with unknown inputs for the purpose of fault detection and isolation(FDI) in a class of bilinear systems. To Analyze the observer and FDI, this paper uses BPF(block-pulse functions). The operational properties of BPF are much applied to the analysis of bilinear systems. The integral operational matrix BPF converts the form of the differential equation into the algebraic problems.

  • PDF

Process and instrument faults detection based on steam generator model (증기발생기 모델을 이용한 계통 및 계측기 고장검출에 관한 연구)

  • Kim, Jung-Soo;Lyou, Joon;Na, Nan-Ju;Kwon, Kee-Choon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.250-255
    • /
    • 1993
  • In this paper, for detection and isolation of instrument and process faults related with steam generator(S/G) in nuclear power plant, two types of observers are designed based on the linearized dynamic model of S/G : a bank of Dedicated Observers (DOS) for instrument faults detection and a bank of Unknown Input Observers(UIO) for process faults detection. And then, they are combined to decide which one between the above two faults occurs. In principle, the failure in ith instrument(process) can be isolated by monitoring the error between the ith output and its estimation obtained from the ith DOS(UIO). It is shown via computer simulations that the present scheme is feasible in finding out the source of a fault.

  • PDF

Built-In-Test Coverage Analysis Considering Failure Mode of Electronics Components (전자부품 고장모드를 고려한 Built-In-Test 성능분석)

  • Seo, Joon-Ho;Ko, Jin-Young;Park, Han-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.449-455
    • /
    • 2015
  • Built-In-Test(hereafter: BIT) is necessary functionality for aircraft flight safety and it requires a high failure detection capacity of more than 95 % in the case of avionics equipment. The BIT coverage analysis is needed to make sure that BIT meets its fault diagnosis capability. FMECA is used a lot of for the BIT coverage analysis. However, in this paper, the BIT coverage analysis based on electronic components is introduced to minimize the analytical error. Further, by applying the failure mode of the electronic components and excluding electronic components that do not affect flight safety, the BIT coverage analysis can be more accurate. Finally, BIT demo was performed and it was confirmed that the performance of the actual BIT matches the analysis of BIT performance.

Model Reference Adaptive Control of Systems with Actuator Failures through Fault Diagnosis

  • Choi, Jae-Weon;Lee, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.125.4-125
    • /
    • 2001
  • The problem of recongurable ight control is investigated, focusing on model reference adaptive control(MRAC) through imprecise fault diagnosis. The method integrates the fault detection and isolation(FDI) scheme with the model reference adaptive control, and can be implemented on-line and in real-time. The algorithm can cope with the fast varying parameters. The Simulation results demonstrate the ability of reconguration to maintain the stability and acceptable performance after a failure.

  • PDF

Improvements in Design and Evaluation of Built-In-Test System (무기체계 정비성 향상을 위한 BIT 설계 및 검증 방안)

  • Heo, Wan-Ok;Park, Eun-Shim;Yoon, Jung-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.111-120
    • /
    • 2012
  • Built-In-Test is a design feature in more and more advanced weapon system. During development test and evaluation(DT&E) it is critical that the BIT system be evaluated. The BIT system is an integral part of the weapon system and subsystem. Built-In-Test assists in conducting on system and subsystem failure detection and isolation to the Line Replaceable Unit(LRU). This capability reduces the need for highly skilled personnel and special test equipment at organizational level, and reduces maintenance down-time of system by shortening Total Corrective Maintenance Time. During DT&E of weapon system the objective of BIT system evaluation is to determine BIT capabilities achieved and to identify deficiencies in the BIT system. As a result corrective actions are implemented while the system is still in development. Through the use of the reiterative BIT evaluation the BIT system design was corrected, improved, or updated, as the BIT system matured.

Canonical correlation analysis based fault diagnosis method for structural monitoring sensor networks

  • Huang, Hai-Bin;Yi, Ting-Hua;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1031-1053
    • /
    • 2016
  • The health conditions of in-service civil infrastructures can be evaluated by employing structural health monitoring technology. A reliable health evaluation result depends heavily on the quality of the data collected from the structural monitoring sensor network. Hence, the problem of sensor fault diagnosis has gained considerable attention in recent years. In this paper, an innovative sensor fault diagnosis method that focuses on fault detection and isolation stages has been proposed. The dynamic or auto-regressive characteristic is firstly utilized to build a multivariable statistical model that measures the correlations of the currently collected structural responses and the future possible ones in combination with the canonical correlation analysis. Two different fault detection statistics are then defined based on the above multivariable statistical model for deciding whether a fault or failure occurred in the sensor network. After that, two corresponding fault isolation indices are deduced through the contribution analysis methodology to identify the faulty sensor. Case studies, using a benchmark structure developed for bridge health monitoring, are considered in the research and demonstrate the superiority of the new proposed sensor fault diagnosis method over the traditional principal component analysis-based and the dynamic principal component analysis-based methods.

The Abnormal Increasing Pseudorange Satellite Detection Method Using Comparison of Residual Horizontal Projection (잔차 수평 투영 비교를 이용한 의사거리 비정상 증가 위성 식별)

  • Ahn, Yong-Woon;Ahn, Jong-Sun;Won, Dae-Hee;Heo, Mun-Beom;Jo, Jeong-Ho;Sung, Sang-Kyung;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.570-576
    • /
    • 2010
  • This paper can be used for GPS air navigation study on integrity monitoring algorithm as, the projected horizontal plane using GPS pseudorange residuals for fault detection satellites were suspected. Failure to remove the detected suspicious satellite, compare with threshold which is calculated using satellite deployment (PDOP) and determine whether the failure is presented. The theory that horizontal projection of the satellite failure residuals greater than residual of normal satellite is proved mathematically. Comparison with horizontal projection residuals are likely to malfunction in the satellite were presented. To evaluate the proposed algorithm, bias fault insert into GPS pseudorange, and compare with conventional parity space method about fault detection and isolation capability.

Fast Diagnosis Method for Submodule Failures in MMCs Based on Improved Incremental Predictive Model of Arm Current

  • Xu, Kunshan;Xie, Shaojun
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1608-1617
    • /
    • 2018
  • The rapid and correct isolation of faulty submodules (SMs) is of great importance for improving the reliability of modular multilevel converters (MMCs). Therefore, a fast diagnosis method containing fault detection and fault location determination was presented in this paper. An improved incremental predictive model of arm current was proposed to detect failures, and the multi-step prediction method was used to eliminate the negative impact of disturbances. Moreover, a control method was proposed to strengthen the fault characteristics to rapidly locate faulty arms and faulty SMs by detecting the variation rate of the SM capacitor voltage. The proposed method can rapidly and easily locate faulty SMs under different load conditions without the need for additional sensors. The experimental results have validated the effectiveness of the proposed method by using a single-phase MMC with four SMs per arm.