• Title/Summary/Keyword: factor-nuclear ${\kappa}B$

Search Result 1,008, Processing Time 0.034 seconds

Screening of Crude Drugs for the Inhibitory Effect on $NF-{\kappa}B$ Activation in Transfectant HaCaT Cells (형질전환된 각질형성세포에서 생약추출물에 의한 $NF-{\kappa}B$ 활성화 억제효과 탐색)

  • Ahn, Kwang-Seok;Kim, Seong-Kie;Moon, Ki-Young;Hahn, Bum-Soo;Kang, Sam-Sik;Kim, Yeong-Shik
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.2 s.133
    • /
    • pp.156-160
    • /
    • 2003
  • $NF-{\kappa}B$ (nuclear factor-kappa B) plays a particularly central role in epidermal biology. It has been established that ultraviolet radiation (UVR) is one of the mechanisms to induce the activation of $NF-{\kappa}B$ in human skin. We previously demonstrated that melanogenic inhibitors may act through the inhibition of $NF-{\kappa}B$ activation in keratinocytes. In order to find another type of melanogenic inhibitors of $NF-{\kappa}B$ activation, various kinds of the extracts from crude drugs $(30\;{\mu}g/ml)$ were preincubated with transfectant HaCaT cells for 3 hrs and then UVR $(60\;mj/cm^2)$ was irradiated. UVR-exposed cells were incubated for another 6 hrs to measure the $NF-{\kappa}B$ activity. $NF-{\kappa}B$ activation was measured with the secreatory alkaline phosphates (SEAP) reporter gene assay using a fluorescence detection method. Among natural products, Lycium chinense, Acanthopanax senticosus, Angelica koreana, Kalopanax pictus and Asparagus cochinchinensis were the most potent inhibitors of $NF-{\kappa}B$ activation by UVR. These observations suggest that some crude drugs might act partially through the modulation of the synthesis of melanotrophic factors to decrease melanogenesis in keratinocytes.

Ethanol Extract of Oenanthe javanica Modulates Inflammatory Response by Inhibiting NF-${\kappa}B$ Mediated Cyclooxygenase-2 Expression in RAW 264.7 Macrophage

  • Lee, Jeong-Min;Kim, Nam-Joo;Cho, Dong-Hyeok;Chung, Min-Young;Hwang, Kwon-Tack;Kim, Hyun-Ji;Jun, Woo-Jin;Park, Chang-Soo
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.303-307
    • /
    • 2006
  • Effect of Oenanthe javanica ethanol extract (OJE) on nuclear factor-${\kappa}B$ (NF-${\kappa}B$)-mediated inflammatory reaction in RAW 264.7 macrophage cells was investigated. The OJE dose-dependently inhibited secretions of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and prostaglandins $E_2\;(PGE_2)$ from lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and blocked LPS-induced expression of cyclooxygenase-2. To clarify mechanistic basis for its inhibitions of NF-${\kappa}B$ and activator protein-1 (AP-1) activations, effects of OJE on activations of NF-${\kappa}B$ and AP-1 genes by luciferase reporter activity were examined. The LPS-stimulated activations of NF-${\kappa}B$ and AP-1 were significantly blocked by 400 and $600\;{\mu$}g/mL of OJE, implicating that OJE might regulate gene expression through more than one signaling pathway. Cytosolic degradation of I-${\kappa}B{\alpha}$ was inhibited by OJE dose-dependently, indicating that the nuclear translocation of p65 was inhibited by OJE. These findings suggest that the inhibition of LPS-stimulated COX-2 expression by OJE is due to its inhibition of NF-${\kappa}B$ activation by blocking I-${\kappa}B{\alpha}$ degradation, which may be mechanistic basis of anti-inflammatory effects of OJE.

Raloxifene, a Selective Estrogen Receptor Modulator, Inhibits Lipopolysaccharide-induced Nitric Oxide Production by Inhibiting the Phosphatidylinositol 3-Kinase/Akt/Nuclear Factor-kappa B Pathway in RAW264.7 Macrophage Cells

  • Lee, Sin-Ae;Park, Seok Hee;Kim, Byung-Chul
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.48-52
    • /
    • 2008
  • We here demonstrate an anti-inflammatory action of raloxifene, a selective estrogen receptor modulator, in lipopolysaccharide (LPS)-induced murine macrophage RAW264.7 cells. Treatment with raloxifene at micromolar concentrations suppressed the production of nitric oxide (NO) by down-regulating expression of the inducible nitric oxide synthase (iNOS) gene in LPS-activated cells. The decreased expression of iNOS and subsequent reduction of NO were due to inhibition of nuclear translocation of transcription factor NF-${\kappa}B$. These effects were significantly inhibited by exposure to the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, or by expression of a dominant negative mutant of PI 3-kinase. In addition, pretreatment with raloxifene reduced LPS-induced Akt phosphorylation as well as NF-${\kappa}B$ DNA binding activity and NF-${\kappa}B$-dependent reporter gene activity. Thus our findings indicate that raloxifene exerts its anti-inflammatory action in LPS-stimulated macrophages by blocking the PI 3-kinase-Akt-NF-${\kappa}B$ signaling cascade, and eventually reduces expression of pro-inflammatory genes such as iNOS.

Viridicatol from Marine-derived Fungal Strain Penicillium sp. SF-5295 Exerts Anti-inflammatory Effects through Inhibiting NF-κB Signaling Pathway on Lipopolysaccharide-induced RAW264.7 and BV2 Cells

  • Ko, Wonmin;Sohn, Jae Hak;Kim, Youn-Chul;Oh, Hyuncheol
    • Natural Product Sciences
    • /
    • v.21 no.4
    • /
    • pp.240-247
    • /
    • 2015
  • Viridicatol (1) has previously been isolated from the extract of the marine-derived fungus Penicillium sp. SF-5295. In the course of further biological evaluation of this quinolone alkaloid, anti-inflammatory effect of 1 in RAW264.7 and BV2 cells stimulated with lipopolysaccharide (LPS) was observed. In this study, our data indicated that 1 suppressed the expression of well-known pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and consequently inhibited the production of iNOS-derived nitric oxide (NO) and COX-2-derived prostaglandin E2 ($PGE_2$) in LPS stimulated RAW264.7 and BV2 cells. Compound 1 also reduced mRNA expression of pro-inflammatory cytokines such as $interleukin-1{\beta}$ ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). In the further evaluation of the mechanisms of these anti-inflammatory effects, 1 was shown to inhibit nuclear factor-kappa B ($NF-{\kappa}B$) pathway in LPS-stimulated RAW264.7 and BV2 cells. Compound 1 blocked the phosphorylation and degradation of inhibitor kappa B $(I{\kappa}B)-{\alpha}$ in the cytoplasm, and suppressed the translocation of $NF-{\kappa}B$ p65 and p50 heterodimer in nucleus. In addition, viridicatol (1) attenuated the DNA-binding activity of $NF-{\kappa}B$ in LPS-stimulated RAW264.7 and BV2 cells.

Non-saponin fraction of red ginseng inhibits monocyte-to-macrophage differentiation and inflammatory responses in vitro (홍삼 비사포닌 분획의 단핵세포 분화와 염증반응에 대한 억제효과)

  • Kang, Bobin;Kim, Chae Young;Hwang, Jisu;Choi, Hyeon-Son
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.70-80
    • /
    • 2019
  • The aim of this study was to investigate the effects of red ginseng-derived non-saponin fraction (NSF) on inflammatory responses and monocyte-to-macrophage differentiation in RAW264.7 and THP-1. NSF effectively inhibited inflammatory responses by downregulating nitric oxide (NO) production and protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). NSF ($2000{\mu}g/mL$) decreased the levels of NO, iNOS, and COX-2 by 33, 83, and 64%, respectively. NSF inhibited the differentiation of monocyte-to-macrophage by decreasing cell adherence along with downregulation of the cluster of differentiation molecule $11{\beta}$ ($CD11{\beta}$) and CD36. In addition, pro-inflammatory cytokines, such as tumor necrosis factor-alpha, interleukin 6, and monocyte chemoattractant protein 1 (MCP-1), were significantly reduced with NSF treatment. The NSF-mediated inhibition of inflammatory responses was due to the regulation of nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). NSF effectively suppressed the translocation of $NF-{\kappa}B$ into the nucleus, while nuclear Nrf2 and its target protein, heme oxygenase-1, levels were significantly increased.

The Inhibitory Effect of Lycii Fructus on LPS-stimulated NF-${\kappa}B$ Activation and iNOS Expression in RAW 264.7 Macrophages

  • Kim, Beum-Seuk;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.47-59
    • /
    • 2008
  • Objective : Anti-inflammatory effects of the extract of Lycii Fructus on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells were investigated. Method : In order to assess the cytotoxic effect of Lycii Fructus on the raw 264.7 macrophages 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay was performed. Reverse transcription-polymerase chain reaction(RT-PCR) analysis of the mRNA levels of tumor necrosis factor-$\alpha$(TNF-$\alpha$) and inducible nitric oxide synthase(iNOS) was performed in order to provide an estimate of the relative level of expression of these genes. The protein level of the inhibitor of nuclear factor-${\kappa}B(I{\kappa}B)$ and nuclear factor-${\kappa}B$(NF-${\kappa}B$) activity was investigated by Western blot assay. NO production was investigated by NO detection. Result : Lycii Fructus suppressed NO production by inhibiting the LPS-induced expressions of iNOS and TNF-$^-\alpha$ mRNA and iNOS protein in RAW 264.7 macrophage cells. Also, Lycii Fructus suppressed activation of NF-${\kappa}B$ in the nucleus. Conclusion : These results show that the extract of Lycii Fructus has anti-inflammatory effect probably by suppressing iNOS expressions through the down-regulation of NF-${\kappa}B$ binding activity.

  • PDF

ent-Kaurane Diterpenoids from Croton tonkinensis Inhibit LPS-induced Transcription Factor NF-${\kappa}{B}$ Activation and NO Production

  • Giang, Phan-Minh;Jin, Hui-Zi;Lee, Jung-Joon
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.120.1-120.1
    • /
    • 2003
  • Nuclear factor-${\kappa}{B}$ (NF-${\kappa}{B}$) belongs to a group of homodimers and heterodimers of Rel/NF-${\kappa}{B}$ proteins that bind to DNA target sites, where they directly regulate gene transcription. The activation of NF-${\kappa}{B}$ has been shown to mediate inflammation and suppress apoptosis. Activated NF-${\kappa}{B}$ has been found n various inflammatory diseases such as rheumatoid arthritis, Atherosclerosis, asthma, nflammatory bowel disease, and Helicobacter pylori-associated gastritis and associated with cancer, cachexia, diabetes, euthyroid sick syndrome, and AIDS. (omitted)

  • PDF

Effect of trans-10, cis-12 Conjugated Linoleic Acid on Calcium-Dependent Reactive Oxygen Species and Nitric Oxide Production and Nuclear Factor-${\kappa}B$ Activation in Lipopolysaccharide-Stimulated RAW 264.7 Cells (LPS 자극 RAW 264.7 세포에 있어서 칼슘의존성 ROS와 NO 생산 및 NF-${\kappa}B$ 활성에 대한 CLA의 억제효과)

  • Choi, Tae-Won;Kang, Byeong-Teck;Kang, Ji-Houn;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.32 no.2
    • /
    • pp.135-140
    • /
    • 2015
  • Trans-10, cis-12-conjugated linoleic acid (t10c12-CLA) has been shown to participate in the regulation of anti-inflammatory effects. The objectives of this study were to examine the effects of t10c12-CLA on reactive oxygen species (ROS) and nitric oxide (NO) production and nuclear factor-kappaB (NF-${\kappa}B$) activation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and to determine whether these effects were associated with change of intracellular calcium ion ($Ca^{2+}$). ROS production was increased in LPS-stimulated RAW 264.7 cells, and this effect was suppressed by 1,2-bis-(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM), a calcium chelator. t10c12-CLA suppressed ROS production in LPS-stimulated RAW 264.7 cells, which was further more decreased by treatment with BAPTA/AM. These indicated that t10c12-CLA decreases $Ca^{2+}$-dependent ROS production in LPS-stimulated RAW 264.7 cells. Similarly, NF-${\kappa}B$ p65 DNA binding activity and NO production were decreased by treatment with either t10c12-CLA, BAPTA/AM, or t10c12-CLA and BAPTA/AM combination. However, there were no differences between t10c12-CLA and BAPTA/AM treatment in NO production of LPS-stimulated RAW 264.7 cells. These data indicate that t10c12-CLA inhibits the increases in ROS and NO production and the NF-${\kappa}B$ activation in LPS-stimulated condition. These results suggested that CLA exerts potent anti-inflammatory effects by suppression of LPS-induced ROS and NO production, and NF-${\kappa}B$ activationn via $Ca^{2+}$-dependent pathway.

The Anti-Inflammatory Effects of Persicaria thunbergii Extracts on Lipopolysaccharide-Stimulated RAW264.7 Cells (Lipopolysaccharide로 처리 된 RAW264.7 세포에서 고마리 추출물의 항염증 효과)

  • Kim, Sang-Bo;Seong, Yeong-Ae;Jang, Hee-Jae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1689-1697
    • /
    • 2011
  • In this study, we investigated the anti-inflammation effect of Persicaria thunbergii (P. thunbergii) on RAW 264.7 murine macrophage cells. The anti-inflammatory activity of P. thunbergii was determined by measuring expression of the LPS-induced inflammatory proteins, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor-${\kappa}B$ (NF-${\kappa}B$), and the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$). Methanol extract of P. thunbergii decreased the expression of iNOS, COX-2 and NF-${\kappa}B$, and increased the expression of HO-1 in LPS-stimulated RAW264.7 cells. Methanol extract was fractioned by n-butanol, hexane and ethyl acetate (EtOAc) and each fraction was tested for inhibitory effects on inflammation. Among the sequential solvent fractions, the EtOAc soluble fraction was investigated by the expression of prostaglandin $E_2$ ($PGE_2$), and showed decreasing form to the dose-dependent manner. EtOAc extract showed the most effective inhibitory activity of the expression of iNOS, COX-2 and NF-${\kappa}B$, and the production of NO. The study showed that P. thunbergii has anti-inflammatory activity through the decrease of NO and inhibition of iNOS, COX-2, $PGE_2$ and NF-${\kappa}B$ expression, and by the increase of HO-1 enzyme. This study needs for more investigation to find out the most effective single compound with anti-inflammatory activity.

Intra-Spinal Bone Marrow Mononuclear Cells Transplantation Inhibits the Expression of Nuclear Factor-${\kappa}B$ in Acute Transection Spinal Cord Injury in Rats

  • Shrestha, Rajiv Prasad;Qiao, Jian Min;Shen, Fu Guo;Bista, Krishna Bahadur;Zhao, Zhong Nan;Yang, Jianhua
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.5
    • /
    • pp.375-382
    • /
    • 2014
  • Objective : To assess the effect of bone marrow mononuclear cells (BMMNCs) transplantation in the expression of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) in spinal cord injury (SCI) in rats. Methods : BMMNCs were isolated from tibia and femur by a density gradient centrifugation. After establishment of acute transection SCI, rats were divided into experiment (BMMNCs), experiment control (0.1 M PBS infused) and sham surgery groups (laminectomy without any SCI). Locomotor function was assessed weekly for 5 weeks post-injury using BBB locomotor score and urinary bladder function daily for 4 weeks post-injury. Activity of NF-${\kappa}B$ in spinal cord was assessed by immunohistochemistry and reverse transcriptase polymerase chain reaction. Results : At each time point post-injury, sham surgery group had significantly higher Basso, Beattie, Bresnahan locomotor and urinary bladder function scores than experiment and experiment control group (p<0.05). At subsequent time interval there were gradual improvement in both experiment and experiment control group, but experiment group had higher score in comparison to experiment control group (p<0.05). Comparisons were also made for expression of activated NF-${\kappa}B$ positive cells and level of NF-${\kappa}B$ messenger RNA in spinal cord at various time points between the groups. Activated NF-${\kappa}B$ immunoreactivity and level of NF-${\kappa}B$ mRNA expression were significantly higher in control group in comparison to experiment and sham surgery group (p<0.05). Conclusion : BMMNCs transplantation attenuates the expression of NF-${\kappa}B$ in injured spinal cord tissue and thus helps in recovery of neurological function in rat models with SCI.