• 제목/요약/키워드: factor-nuclear ${\kappa}B$

검색결과 1,009건 처리시간 0.022초

Hydrogen sulfide protects from acute kidney injury via attenuating inflammation activated by necroptosis in dogs

  • Wang, Shuang;Liu, XingYao;Liu, Yun
    • Journal of Veterinary Science
    • /
    • 제23권5호
    • /
    • pp.72.1-72.14
    • /
    • 2022
  • Background: The treatment of acute kidney injury (AKI), a common disease in dogs, is limited. Therefore, an effective method to prevent AKI in veterinary clinics is particularly crucial. Objectives: Hydrogen sulfide (H2S) is the third gaseous signal molecule involved in various physiological functions of the body. The present study investigated the effect of H2S on cisplatin-induced AKI and the involved mechanisms in dogs. Methods: Cisplatin-injected dogs developed AKI symptoms as indicated by renal dysfunction and pathological changes. In the H2S-treated group, 50 mM sodium hydrosulfide (NaHS) solution was injected at 1 mg/kg/h for 30 min before cisplatin injection. After 72 h, tissue and blood samples were collected immediately. We performed biochemical tests, optical microscopy studies, analysis with test kits, quantitative reverse-transcription polymerase chain reaction, and western blot analysis. Results: The study results demonstrated that cisplatin injection increased necroptosis and regulated the corresponding protein expression of receptor interacting protein kinase (RIPK) 1, RIPK3, and poly ADP-ribose polymerase 1; furthermore, it activated the expressions of inflammatory factors, including tumor necrosis factor-alpha, nuclear factor kappa B, and interleukin-1β, in canine kidney tissues. Moreover, cisplatin triggered oxidative stress and affected energy metabolism. Conversely, an injection of NaHS solution considerably reduced the aforementioned changes. Conclusions: In conclusion, H2S protects the kidney from cisplatin-induced AKI through the mitigation of necroptosis and inflammation. These findings provide new and valuable clues for the treatment of canine AKI and are of great significance for AKI prevention in veterinary clinics.

Pear pomace alleviated atopic dermatitis in NC/Nga mice and inhibited LPS-induced inflammation in RAW 264.7 macrophages

  • You, Mikyoung;Wang, Ziyun;Kim, Hwa-Jin;Lee, Young-Hyun;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • 제16권5호
    • /
    • pp.577-588
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Poorly regulated inflammation is believed to be the most predominant factor that can result in a wide scope of diseases including atopic dermatitis (AD). Despite many studies on the effect of pear pomace in obesity-related disorders including dysregulated gut microbiota, the protective effect of pear pomace in AD is still unknown. This study aimed to evaluate the effect of pear pomace ethanol extract (PPE) on AD by inhibiting inflammation. MATERIALS/METHODS: In the in vivo experiment, 2, 4-dinitrochlorobenzene (DNCB) was applied to NC/Nga mice to induce AD-like skin lesions. After the induction, PPE was administered daily by oral gavage for 4 weeks. The clinical severity score, serum IgE levels, spleen weight, histological changes in dorsal skin, and inflammation-related proteins were measured. In the cell study, RAW 264.7 cells were pretreated with PPE before stimulation with lipopolysaccharide (LPS). Nitrite oxide (NO) production and nuclear factor kappa B (NF-𝛋B) protein expression were detected. RESULTS: Compared to the AD control (AD-C) group, IgE levels were dramatically decreased via PPE treatment. PPE significantly reduced scratching behavior, improved skin symptoms, and decreased ear thickness compared to the AD-C group. In addition, PPE inhibited the DNCB-induced expression of inducible nitrite oxide synthase (iNOS), the receptor for advanced glycation end products, extracellular signal-regulated kinase (ERK) 1/2, and NF-𝛋B. PPE inhibited the LPS-induced overproduction of NO and the enhanced expression of iNOS and cyclooxygenase-2. Moreover, the phosphorylation of ERK1/2 and NF-𝛋B in RAW 264.7 cells was suppressed by PPE. CONCLUSIONS: These results suggest that PPE could be explored as a therapeutic agent to prevent AD.

미세먼지로 인한 피부 각질 세포 손상에서 몰약 에탄올 추출물의 항염증 효과 (Anti-inflammatory Effects of Myrrh Ethanol Extract on Particulate Matter-induced Skin Injury)

  • 정영희;노연화;정명수
    • 대한한의학회지
    • /
    • 제43권3호
    • /
    • pp.1-15
    • /
    • 2022
  • Objectives: Myrrh have been used as a traditional remedy to treat infectious and inflammatory diseases. However, it is largely unknown whether myrrh ethanol extract could exhibit the inhibitory activities against particulate matter (PM)-induced skin injury on human keratinocytes, HaCaT cells. Therefore, this study was aimed to investigate the inhibitory activity of myrrh ethanol extract on PM-induced skin injury in HaCaT cells. Methods: To investigate the inhibitory effects of myrrh ethanol extract in HaCaT cells, the skin injury model of HaCaT cells was established under PM treatment. HaCaT keratinocyte cells were pre-treated with myrrh ethanol extract for 1 h, and then stimulated with PM. Then, the cells were harvested to measure the cell viability, reactive oxygen species (ROS), pro-inflammatory cytokines including interleukin (IL) 1-beta, IL-6, and tumor necrosis factor (TNF)-𝛼, hyaluronidase, collagen, MMPs. In addition, we examined the mitogen activated protein kinases (MAPKs) and inhibitory kappa B alpha (I𝜅-B𝛼) as inhibitory mechanisms of myrrh ethanol extract. Results: The treatment of myrrh ethanol extract inhibited the PM-induced cell death and ROS production in HaCaT cells. In addition, myrrh ethanol extract treatment inhibited the PM-induced elevation of IL-1beta, IL-6, and TNF-𝛼. Also, myrrh ethanol extract treatment inhibited the increase of hyaluronidase, MMP and decrease of collagen. Furthermore, myrrh ethanol extract treatment inhibited the activation of MAPKs and the degradation of I𝜅-B𝛼. Conclusions: Our result suggest that treatment of myrrh ethanol extract could inhibit the PM-induced skin injury via deactivation of MAPKs and nuclear factor (NF)-𝜅B in HaCaT cells. This study could suggest that myrrh ethanol extract could be a beneficial agent to prevent skin damage or inflammation.

괴화(槐花) 물 추출물의 항염증 효과 (Anti-inflammatory Effects of Sophora Japonica Aqueous Extract)

  • 배기상;조범연;김민선;박경철;구본순;서상완;김성규;윤승원;정원석;함경완;송호준;윤명자;전호성;권강범;김재효;박성주
    • 동의생리병리학회지
    • /
    • 제23권6호
    • /
    • pp.1392-1398
    • /
    • 2009
  • The purpose of this study was to investigate the anti-inflammatory effects of aqueous extract from Sophora Japonica (SJ) on the RAW 264.7 cells. To evaluate the anti-inflammatory effects of SJ, we examined the cytokine productions including nitric oxide (NO), interleukin (IL)-1b, IL-6 and tumor necrosis factor-a (TNF-a) in lipopolysaccharide (LPS)-induced RAW 264.7 cells and also inhibitory mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor kappa b (NF-kB) using Western blot. SJ inhibited LPS-induced production of NO, TNF-a but not of IL-1b and IL-6 in RAW 264.7 cells. SJ inhibited the activation of MAPKs such as extracelluar signal-regulated kinase (ERK 1/2), c-Jun NH2-terminal kinase (JNK) and p38 but not of NF-kB in the LPS-stimulated RAW 264.7 cells. In conclusion, SJ down-regulated LPS-induced NO and TNF-a productions via MAPKs, which could be a clinical basis for inflammatory diseases and autoimmune diseases.

3T3-L1 지방세포에서 루페올의 IRS-1의 인산화 조절을 통한 TNF-α 유도 인슐린 저항성 개선 효과 (Lupeol Improves TNF-α Induced Insulin Resistance by Downregulating the Serine Phosphorylation of Insulin Receptor Substrate 1 in 3T3-L1 Adipocytes)

  • 이현아;한지숙
    • 생명과학회지
    • /
    • 제33권11호
    • /
    • pp.859-867
    • /
    • 2023
  • 루페올은 5환성 트리테르펜의 일종으로 많은 질병에 치료 효과가 있는 것으로 보고되었으나, 인슐린 저항성에 미치는 영향은 명확하지 않다. 본 연구에서는 3T3-L1 지방세포에서 루페올의 IRS-1 인산화 억제능을 통해 인슐린 저항성 개선효과를 조사하였다. 3T3-L1 세포를 배양하고 TNF-α를 24시간 동안 처리하여 인슐린 저항성을 유도하였다. 서로 다른 농도의 루페올(15, 30 μM) 또는 100 nM의 rosiglitazone을 처리한 세포를 배양한 후, 용해된 세포를 이용하여 western blotting을 시행하였다. 실험결과 루페올은 지방세포에서 TNF-α에 의해 유발되는 인슐린 신호전달의 음성 조절자와 염증 활성화 단백질 kinase에 대한 개선 효과를 나타냈다. 인슐린 신호전달의 음성 조절자인 PTP-1B와 JNK의 활성 및 IKK와 염증활성화 단백질키나아제의 활성을 억제하였다. 또한, 루페올은 IRS-1의 serine 인산화는 하향 조절하고 tyrosine 인산화는 상향 조절하였다. 그 후, 하향 조절된 PI3K/AKT 경로가 활성화되고, GLUT 4의 세포막 전위가 자극되어, 결과적으로 인슐린 저항성이 유도된 3T3-L1 지방세포에서에서 세포내 포도당 흡수가 증가하였다. 본 연구결과, 루페올은 3T3-L1 지방세포에서 인슐린 신호전달 및 염증 활성화 단백질 kinsase들의 음성 조절인자를 억제하여, IRS-1의 serine 인산화를 하향 조절함으로써 TNF-α 유발 인슐린 저항성을 개선할 수 있을 것으로 사료된다.

Actin-binding LIM protein 1 regulates receptor activator of NF-κB ligand-mediated osteoclast differentiation and motility

  • Jin, Su Hyun;Kim, Hyunsoo;Gu, Dong Ryun;Park, Keun Ha;Lee, Young Rae;Choi, Yongwon;Lee, Seoung Hoon
    • BMB Reports
    • /
    • 제51권7호
    • /
    • pp.356-361
    • /
    • 2018
  • Actin-binding LIM protein 1 (ABLIM1), a member of the LIM-domain protein family, mediates interactions between actin filaments and cytoplasmic targets. However, the role of ABLIM1 in osteoclast and bone metabolism has not been reported. In the present study, we investigated the role of ABLIM1 in the receptor activator of $NF-{\kappa}B$ ligand (RANKL)-mediated osteoclastogenesis. ABLIM1 expression was induced by RANKL treatment and knockdown of ABLIM1 by retrovirus infection containing Ablim1-specific short hairpin RNA (shAblim1) decreased mature osteoclast formation and bone resorption activity in a RANKL-dose dependent manner. Coincident with the downregulated expression of osteoclast differentiation marker genes, the expression levels of c-Fos and the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), critical transcription factors of osteoclastogenesis, were also decreased in shAblim1-infected osteoclasts during RANKL-mediated osteoclast differentiation. In addition, the motility of preosteoclast was reduced by ABLIM1 knockdown via modulation of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt/Rac1 signaling pathway, suggesting another regulatory mechanism of ABLIM1 in osteoclast formation. These data demonstrated that ABLIM1 is a positive regulator of RANKL-mediated osteoclast formation via the modulation of the differentiation and PI3K/Akt/Rac1-dependent motility.

Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions

  • Mohanan, Padmanaban;Subramaniyam, Sathiyamoorthy;Mathiyalagan, Ramya;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제42권2호
    • /
    • pp.123-132
    • /
    • 2018
  • Ginseng has gained its popularity as an adaptogen since ancient days because of its triterpenoid saponins, known as ginsenosides. These triterpenoid saponins are unique and classified as protopanaxatriol and protopanaxadiol saponins based on their glycosylation patterns. They play many protective roles in humans and are under intense research as various groups continue to study their efficacy at the molecular level in various disorders. Ginsenosides Rb1 and Rg1 are the most abundant ginsenosides present in ginseng roots, and they confer the pharmacological properties of the plant, whereas ginsenoside Rg3 is abundantly present in Korean Red Ginseng preparation, which is highly known for its anticancer effects. These ginsenosides have a unique mode of action in modulating various signaling cascades and networks in different tissues. Their effect depends on the bioavailability and the physiological status of the cell. Mostly they amplify the response by stimulating phosphotidylinositol-4,5-bisphosphate 3-kinase/protein kinase B pathway, caspase-3/caspase-9-mediated apoptotic pathway, adenosine monophosphate-activated protein kinase, and nuclear factor kappa-light-chain-enhancer of activated B cells signaling. Furthermore, they trigger receptors such as estrogen receptor, glucocorticoid receptor, and N-methyl-$\text\tiny{D}$-aspartate receptor. This review critically evaluates the signaling pathways attenuated by ginsenosides Rb1, Rg1, and Rg3 in various tissues with emphasis on cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders.

The Role of Yoga Intervention in the Treatment of Allergic Rhinitis: A Narrative Review and Proposed Model

  • Chauhan, Ripudaman Singh;Rajesh, S.K
    • 셀메드
    • /
    • 제10권3호
    • /
    • pp.25.1-25.7
    • /
    • 2020
  • Allergic Rhinitis (AR) is an IgE (immunoglobin-E) mediated inflammatory condition of upper respiratory tract; main clinical features involve runny nose, sneezing, nasal obstruction, itching and watery eyes. AR is a global problem and has large variations in incidences, currently affects up to 20% - 40% of the population worldwide. It may not be a life-threatening disease per se but indisposition from the condition can be severe and has the potential to adversely affect the daily functioning of life. Classical yoga literature indicates that, components of yoga have been used to treat numerous inflammatory conditions including upper respiratory tract. A few yoga intervention studies reported improvement in lung capacity, Nasal air flow and symptoms of allergic rhinitis. This review examined various anti-inflammatory pathways mediated through Yoga that include downregulation of pro-inflammatory cytokines and upregulation of anti-inflammatory cytokines. The hypothalaminic-pitutary-adrenal (HPA) axis and vagal efferent stimulation has been reported to mediate anti-inflammatory effect. A significant reduction is also reported in other inflammatory biomarkers like- TNF-alpha, nuclear factor kappa B (NF-κB), plasma CRP and Cortisol level. Neti, a yogic nasal cleansing technique, reported beneficial effect on AR by direct physical cleansing of thick mucus, allergens, and inflammatory mediator from nasal mucosa resulting in improved ciliary beat frequency. We do not find any study showing effect of yoga on neurogenic inflammation. In summary, Integrated Yoga Therapy may have beneficial effect in reducing symptoms and improving quality of life for patients with allergic rhinitis. Yoga may reduce inflammation through mediating neuro-endocrino-immunological network. Future studies are needed to explore the mechanism how yoga might modulate immune inflammation cascade and neurogenic inflammation at the cellular level in relevance to allergic rhinitis; the effects of kriyas (yogic cleansing techniques) also need to be evaluated in early and late phase of AR. So the proposed model could guide future research.

Harmal Extract Induces Apoptosis of HCT116 Human Colon Cancer Cells, Mediated by Inhibition of Nuclear Factor-κB and Activator Protein-1 Signaling Pathways and Induction of Cytoprotective Genes

  • Elkady, Ayman I;Hussein, Rania A;El-Assouli, Sufian M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1947-1959
    • /
    • 2016
  • Background: Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the second most common type of cancer worldwide in both men and women. It accounts yearly for approximately 9% of all new cases of cancers. Furthermore, the current chemotherapeutic regimens seem unsatisfactory, so that exploration of novel therapeutic modalities is needed. The present study was undertaken to investigate the inhibitory effects of a crude alkaloid extract (CAERS) of a medicinal herb, Rhazya stricta, on proliferation of CRC HCT116 cells and to elucidate mechanisms of action. To achieve these aims, we utilized MTT, comet, DNA laddering and gene reporter assays, along with Western blot and RT-PCR analyses. Results: We found that CAERS inhibited cell proliferation and induced apoptotic cell death in HCT116 cells. Hallmarks of morphological and biochemical signs of apoptosis were clearly evident. CAERS down-regulated DNA-binding and transcriptional activities of NF-${\kappa}B$ and AP-1 proteins, while up-regulating expression of the Nrf-2 protein. It also down-regulated expression levels of the ERK MAPK, Bcl-2, cyclin D1, CDK-4, survivin and VEGF and up-regulated levels of Bax, caspase-3/7 and -9, p53, p21, Nrf-2. Markedly, it promoted mRNA expression levels of cytoprotective genes including the hemeoxygenase-1, NAD(P)H quinine oxidoreductase 1 and UDP-glucuronyltransferase. Conclusions: These findings indicate that CAERS exerts antiproliferative action on CRC cells through induction of apoptotic mechanisms, and suggest CAERS could be a promising agent for studying and developing novel chemotherapeutic agents aimed at novel molecular targets for the treatment of CRC.

$PGT-{\beta}$ 세포주에서 자하거 약침액의 $H_2O_2$로 인한 Apoptosis에 대한 방어 기전 (Protective Mechanism of Hominis Placenta Extract Against ${H_2O_2}-Induced$ Apoptosis in $PGT-{\beta}$ Cells)

  • Jung-Chul, Seo;Jae-Dong, Lee;Dong-Suk, Park;Sung-Keel, Kang;Byung-Cheol, Ahn;Ee-Hwa, Kim;Soon-Ae, Kim;Hee-Jae, LeeK;Chang-Ju, Kim
    • 대한한의학회지
    • /
    • 제22권3호
    • /
    • pp.92-97
    • /
    • 2001
  • 목적 :본 연구는 최근 임상에서 많이 사용하는 자하거 약침액이 과산화수소($H_2O_2$)로 야기된 송과선 세포의 Apoptosis에 있어서 세포 보호에 미치는 영향과 그 기전을 분석하였다. 방법 :송과선 세포주에서 자하거 약침액의 $H_2O_2$로 인한 Apoptosis에 대한 방어 기전을 관찰하기 위하여 면역세포화학법. 세포화학법 및 reverse transcription-polymerase chain reaction (RT-PCR)을 시행하였다. 결과 : 자하거 약침액 투여군에서는 nuclear factor kappa B (NFkB), inducible nitric oxide synthase (iNOS), nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase의 발현이 $H_2O_2$ 투여군보다 감소하였다. RT-PCR에서는 caspase-3의 발현이 자하거 약침액 투여군에서 $H_2O_2$ 투여군보다 억제되었다. 결론: 이상의 결과를 통하여 자하거 약침액이 $H_2O_2$로 유발된 Apoptosis에서 세포보호 효과가 있으며 그 기전은 iNOS와 caspase-3의 억제에 기인할 가능성을 시사한다고 하겠다.

  • PDF