• Title/Summary/Keyword: factor-nuclear ${\kappa}B$

Search Result 1,013, Processing Time 0.033 seconds

Inhibitory Effect of SPA0355, a Thiourea Analogue, on Inflammation and Alveolar Bone Loss in Rats with Ligature-Induced Periodontitis

  • Bak, Eun-Jung;Kim, Ji-Hye;Lee, Dong-Eun;Park, Byung-Hyun;Ryu, Jae-Ha;Cha, Jeong-Heon;Jeon, Ra-Ok;Yoo, Yun-Jung
    • International Journal of Oral Biology
    • /
    • v.37 no.2
    • /
    • pp.63-68
    • /
    • 2012
  • It has been documented that SPA0355 exerts antiinflammatory effects via the inhibition of nuclear factor-kappaB activation. In present study, we investigated the inhibitory effects of SPA0355 on periodontitis in an animal model. Periodontitis was induced by ligation of the cervix of the 1st molar in the left mandible in rats. After ligature, the rats were randomly divided into four groups and topically applied with SPA0355 (0.5, 1, and 2%) or the vehicle alone once daily for 10 days. Body weight and food intake were measured daily throughout the experimental period. At day 10 post-ligature, the infiltration of inflammatory cells and distance of the cementoenamel junction (CEJ) to the alveolar bone crest (ABC) in the distal area of ligatured tooth were estimated histopathologically. No changes in body weight or food intake were found between the control and SPA0355 groups. The degree of inflammation was decreased in all three SPA0355 application groups. A decrease CEJ-ABC distance was observed in the 0.5% and 1% SPA0355 groups. These results indicate that SPA0355 inhibits the infiltration of inflammatory cells and alveolar bone resorption and suggests its potential as a therapeutic agent for periodontitis.

Endometriosis, Leiomyoma and Adenomyosis: the Risk of Gynecologic Malignancy

  • Verit, Fatma Ferda;Yucel, Oguz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5589-5597
    • /
    • 2013
  • The aim of this review article was to evaluate the relationship and the possible etiological mechanisms between endometriosis, leiomyoma (LM) and adenomyosis and gynecological cancers, such as ovarian and endometrial cancer and leiomyosarcoma (LMS). MEDLINE was searched for all articles written in the English literature from July 1966 to May 2013. Reports were collected systematically and all the references were also reviewed. Malignant transformation of gynecologic benign diseases such as endometriosis, adenomyosis and LM to ovarian and endometrial cancer remains unclear. Hormonal factors, inflammation, familial predisposition, genetic alterations, growth factors, diet, altered immune system, environmental factors and oxidative stress may be causative factors in carcinogenesis. Early menarche, low parity, late menopause and infertility have also been implicated in the pathogenesis of these cancers. Ovarian cancers and endometriosis have been shown to have common genetic alterations such as loss of heterozygosity (LOH), PTEN, p53, ARID1A mutations. MicroRNAs have also been implicated in malignant transformation. Inflammation releases proinflammatory cytokines, and activates tumor associated macrophages (TAMS) and nuclear factor kappa b (NF-KB) signaling pathways that promote genetic mutations and carcinogenesis. MED12 mutations in LM and smooth muscle tumors of undetermined malignant potential (STUMP) may contribute to malignant transformation to LMS. A hyperestrogenic state may be shared in common with pathogenesis of adenomyosis, LM and endometrial cancer. However, the effect of these benign gynecologic diseases on endometrial cancer should be studied in detail. This review study indicates that endometriosis, LM, adenomyosis may be associated with increased risk of gynecological cancers such as endometrial and ovarian cancers. The patients who have these gynecological benign diseases should be counseled about the future risks of developing cancer. Further studies are needed to investigate the relationship between STUMPs, LMS and LM and characteristics and outcome endometrial carcinoma in adenomyotic patients.

A Novel Mutation in the DNA Binding Domain of NFKB is Associated with Speckled Leukoplakia

  • Govindarajan, Giri Valanthan Veda;Bhanumurthy, Lokesh;Balasubramanian, Anandh;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3627-3629
    • /
    • 2016
  • Background: Activation and inactivation of nuclear factor of kappa light chain gene enhancer in B cells (NFKB) is tightly regulated to ensure effective onset and cessation of defensive inflammatory signaling. However, mutations within NFKB, or change in activation and inactivation molecules have been reported in a few cancers. Although oral squamous cell carcinoma is one of the most prevalent forms of cancer in India, with a development associated with malignant transformation of precancerous lesions, the genetic status of NFKB and relative rates of change in oral precancerous lesions remain unknown. Hence in the present study we investigated all twenty four exons of NFKB gene in two precancerous lesions, namely oral submucous fibrosis (OSMF) and oral leukoplakia (OL) to understand its occurrence, incidence and assess its possible contribution to malignant transformation. Materials and Methods: Chromosomal DNA isolated from twenty five each of OSMF and OL tissue biopsy samples were subjected to PCR amplification with intronic primers flanking twenty four exons of the NFKB gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the mutation status. Results: Sequence analysis identified a novel heterozygous mutation, c.419T>A causing substitution of leucine with glutamine at codon 140 (L140Q) in an OL sample. Conclusions: The identification of a substitution mutation L140Q within the DNA binding domain of NFKB in OL suggests that NFKB mutation may be relatively an early event during transformation. To the best of our knowledge, this study is the first to have identified a missense mutation in NFKB in OL.

Combined effect of bisphosphonate and recombinant human bone morphogenetic protein 2 on bone healing of rat calvarial defects

  • Kim, Ho-Chul;Song, Jae-Min;Kim, Chang-Joo;Yoon, Sang-Yong;Kim, In-Ryoung;Park, Bong-Soo;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.16.1-16.7
    • /
    • 2015
  • Background: This study aimed to investigate new bone formation using recombinant human bone morphogenetic protein 2 (rhBMP-2) and locally applied bisphosphonate in rat calvarial defects. Methods: Thirty-six rats were studied. Two circular 5 mm diameter bony defect were formed in the calvaria using a trephine bur. The bony defect were grafted with $Bio-Oss^{(R)}$ only (group 1, n = 9), $Bio-Oss^{(R)}$ wetted with rhBMP-2 (group 2, n = 9), $Bio-Oss^{(R)}$ wetted with rhBMP-2 and 1 mM alendronate (group 3, n = 9) and $Bio-Oss^{(R)}$ wetted with rhBMP-2 and 10 mM alendronate (group 4, n = 9). In each group, three animals were euthanized at 2, 4 and 8 weeks after surgery, respectively. The specimens were then analyzed by histology, histomorphometry and immunohistochemistry analysis. Results: There were significant decrease of bone formation area (p < 0.05) between group 4 and group 2, 3. Group 3 showed increase of new bone formation compared to group 2. In immunohistochemistry, collagen type I and osteoprotegerin (OPG) didn't show any difference. However, receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) decreased with time dependent except group 4. Conclusion: Low concentration bisphosphonate and rhBMP-2 have synergic effect on bone regeneration and this is result from the decreased activity of RANKL of osteoblast.

Ethyl Docosahexaenoate and Its Acidic Form Increase Bone Formation by Induction of Osteoblast Differentiation and Inhibition of Osteoclastogenesis

  • Choi, Bo-Yun;Eun, Jae-Soon;Nepal, Manoj;Lee, Mi-Kyung;Bae, Tae-Sung;Kim, Byung-Il;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.70-76
    • /
    • 2011
  • Bone remodeling is a dynamic process involving a constant balance between osteoclast-induced bone resorption and osteoblast-induced bone formation. Osteoclasts play a crucial homeostatic role in skeletal modeling and remodeling, and destroy bone in many pathological conditions. Previously, we reported that the hexane soluble fraction of Ficus carica inhibited osteoclast differentiation. Poly unsaturated fatty acids, such as ethyl docosahexaenoate (E-DHA), docosahexaenoic acid (DHA), cis-11,14-eicosadienoic acid (EDA) and eicosapentaenoic acid (EPA), were identified from the hexane soluble fraction of Ficus carica. Among them, E-DHA most potently inhibited osteoclastogenesis in RAW264.7 cells. E-DHA reduced the activities of JNK and NF-$\kappa}B$. E-DHA suppressed the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1). Interestingly, DHA increased the activity of alkaline phosphatase and expression of bone morphogenetic protein 2 (BMP2) more than E-DHA in MC3T3-E1 cells, suggesting that DHA may induce osteoblast differentiation. The data suggests that a combination of E-DHA and DHA has potential use in the treatment of diseases involving abnormal bone lysis, such as osteoporosis, rheumatoid arthritis and periodontal bone erosion.

Imperatorin Suppresses Degranulation and Eicosanoid Generation in Activated Bone Marrow-Derived Mast Cells

  • Jeong, Kyu-Tae;Lee, Eujin;Park, Na-Young;Kim, Sun-Gun;Park, Hyo-Hyun;Lee, Jiean;Lee, Youn Ju;Lee, Eunkyung
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.421-427
    • /
    • 2015
  • Imperatorin has been known to exert many biological functions including anti-inflammatory activity. In this study, we investigated the inhibitory effects of imperatorin on the production of inflammatory mediators in mouse bone marrow-derived mast cells (BMMC). Imperatorin inhibited degranulation and the generation of eicosanoids (leukotriene $C_4$ ($LTC_4$) and prostaglandin $D_2$ ($PGD_2$) in IgE/antigen (Ag)-stimulated BMMC. To elucidate the molecular mechanism involved in this process, we investigated the effect of imperatorin on intracellular signaling in BMMC. Biochemical analyses of the IgE/Ag-mediated signaling pathway demonstrated that imperatorin dramatically attenuated degranulation and the production of 5-lipoxygenase-dependent $LTC_4$ and cyclooxygenase-2-dependent $PGD_2$ through the inhibition of intracellular calcium influx/phospholipase $C{\gamma}1$, cytosolic phospholipase $A_2$/mitogen-activated protein kinases and/or nuclear factor-${\kappa}B$ pathways in BMMC. These results suggest that the effects of imperatorin on inhibition of degranulation and eicosanoid generation through the suppression of multiple steps of IgE/Ag-mediated signaling pathways would be beneficial for the prevention of allergic inflammation.

Label-free Noninvasive Characterization of Osteoclast Differentiation Using Raman Spectroscopy Coupled with Multivariate Analysis

  • Jung, Gyeong Bok;Kang, In Soon;Lee, Young Ju;Kim, Dohyun;Park, Hun-Kuk;Lee, Gi-Ja;Kim, Chaekyun
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.412-420
    • /
    • 2017
  • Multinucleated bone resorptive osteoclasts differentiate from bone marrow-derived monocyte/macrophage precursor cells. During osteoclast differentiation, mononuclear pre-osteoclasts change their morphology and biochemical characteristics. In this study, Raman spectroscopy with multivariate techniques such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were used to extract biochemical information related to various cellular events during osteoclastogenesis. This technique allowed for label-free and noninvasive monitoring of differentiating cells, and clearly discriminated four different time points during osteoclast differentiation. The Raman band intensity showed significant time-dependent changes that increased up to day 4. The results of Raman spectroscopy agreed with results from atomic force microscopy (AFM) and tartrate-resistant acid phosphatase (TRAP) staining, a conventional biological assay. Under AFM, normal spindle-like mononuclear pre-osteoclasts became round and smaller at day 2 after treatment with a receptor activator of nuclear $factor-{\kappa}B$ ligand and they formed multinucleated giant cells at day 4. Thus, Raman spectroscopy, in combination with PCA-LDA, may be useful for noninvasive label-free quality assessment of cell status during osteoclast differentiation, enabling more efficient optimization of the bioprocesses.

Can denosumab be a substitute, competitor, or complement to bisphosphonates?

  • Kim, Su Young;Ok, Hwoe Gyeong;Birkenmaier, Christof;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.30 no.2
    • /
    • pp.86-92
    • /
    • 2017
  • Osteoblasts, originating from mesenchymal cells, make the receptor activator of the nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) in order to control differentiation of activated osteoclasts, originating from hematopoietic stem cells. When the RANKL binds to the RANK of the pre-osteoclasts or mature osteoclasts, bone resorption increases. On the contrary, when OPG binds to the RANK, bone resorption decreases. Denosumab (AMG 162), like OPG (a decoy receptor), binds to the RANKL, and reduces binding between the RANK and the RANKL resulting in inhibition of osteoclastogenesis and reduction of bone resorption. Bisphosphonates (BPs), which bind to the bone mineral and occupy the site of resorption performed by activated osteoclasts, are still the drugs of choice to prevent and treat osteoporosis. The merits of denosumab are reversibility targeting the RANKL, lack of adverse gastrointestinal events, improved adherence due to convenient biannual subcutaneous administration, and potential use with impaired renal function. The known adverse reactions are musculoskeletal pain, increased infections with adverse dermatologic reactions, osteonecrosis of the jaw, hypersensitivity reaction, and hypocalcemia. Treatment with 60 mg of denosumab reduces the bone resorption marker, serum type 1 C-telopeptide, by 3 days, with maximum reduction occurring by 1 month. The mean time to maximum denosumab concentration is 10 days with a mean half-life of 25.4 days. In conclusion, the convenient biannual subcutaneous administration of 60 mg of denosumab can be considered as a first-line treatment for osteoporosis in cases of low compliance with BPs due to gastrointestinal trouble and impaired renal function.

RANKL expression is mediated by p38 MAPK in rat periodontal ligament cells (백서 치주인대세포의 RANKL 발현에 대한 p38 MAPK의 역할)

  • Kim, Chong-Cheol;Kim, Young-Joon;Chung, Hyun-Ju;Kim, Ok-Su
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.489-498
    • /
    • 2004
  • Recent studies have demonstrated that human periodontal ligament cells express receptor activation of nuclear factor ${\kappa}B$ ligand (RANKL) which enhances the bone resorbing activity of osteoclasts differentiated from hematopoietic preosteoclasts. The purpose of this study is to determine the effects of p38 MAPK and JNK kinase upon regulating RANKL and OPG in response to $IL-1{\beta}$(l ng/ml) in rat periodontal ligament cells. Soluble RANKL was measured by immunoassay. The effects of p38 MAPK on RANKL and OPG expression was determined by RT-PCR. The results were as follows: 1. Periodontal ligament cells which stimulated by $IL-1{\beta}$ increased soluble RANKL synthesis by dose-dependent pattern. 2. p38 MAP kinase inhibitor (SB203580) showed regulation of soluble RANKL expression by dose-dependent manners. 3. p38 MAP kinase inhibitor (SB203580) regulated the expression of RANKL, but it dose regulate the expresseion of OPG. 4. JNK (c-jun $NH_2-terminal$ kinase) inhibitor (PD98059) did not regulate mRANKL and mOPG. These results suggested that p38 MAPK play a significant role in RANKL gene expression.

Anti-oxidant and anti-inflammatory effect of Allium Hookeri water extracts in RAW 264.7 cells (삼채(三菜) 물추출물이 RAW 264.7 세포의 항산화 및 염증반응에 미치는 영향)

  • Lee, Sangsoo;Han, Hyosang;Yoo, Jayeon;Nam, Myung Soo;Kim, Keekwang
    • The Korea Journal of Herbology
    • /
    • v.35 no.4
    • /
    • pp.37-43
    • /
    • 2020
  • Objectives : Allium hookeri is a well-known traditional herbal remedy and its root used for treatment of inflammation and tumor. However, the mechanism of anti-inflammatory effect of Allium hookeri is still unknown. This study aims to examine the mechanism of anti-inflammatory effect of Allium hookeri on mouse macrophage cell line, RAW 264.7 cells. Methods : Anti-oxidant effect of water extract of Allium hookeri (WEAH) was measured by 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay. 3- (4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was performed to determine the effect of WEAH on cell viability in RAW 264.7 cells. In addition, anti-inflammatory effect of WEAH was investigated in RAW 264.7 cells. Inflammation of RAW 264.7 cells induced by lipopolysarccharide (LPS) treatment and expression levels of inflammatory cytokine interleukin 1 β (IL-1β) and interleukin 6 (IL-6) gene were analyzed using quantitative reverse transcription PCR (qRT-PCR) analysis. Furthermore, the phosphorylation of inhibitor of nuclear factor kappa B (IκBα) after LPS treatment with WEAH-treated RAW 264.7 cells was confirmed by immunoblot analysis. Results : WEAH showed a strong anti-oxidant effect and no cytotoxicity to RAW 264.7 cells up to 2 mg/㎖ concentration. The LPS-induced mRNA expression levels of IL-1β and IL-6 were decreased by WEAH treatment. Furthermore, the LPS-induced phosphorylation of IκBα is attenuated by WEAH treatment. Conclusions : Through experimental demonstration of anti-oxidant and anti-inflammatory effects of WEAH, we suggest that Allium hookeri is a valuable material for prevention and treatment of various inflammatory diseases.