본 논문에서는 로봇의 시각시스템에 효과적으로 적용할 수 있는 얼굴 추적 방법을 제안하였다. 제안한 알고리즘은 동영상의 움직임 영역을 검출한 후 얼굴 영역을 추적한다. 동영상의 움직임 검출은 연속되는 2개의 프레임을 사용하여 차영상을 구한 후, 잡음을 제거하기 위한 방법으로 메디안 필터와 침식 및 팽창연산을 사용하여 움직임 영역을 검출한다. 움직임 영역에서 피부색을 추출하기 위하여 표본영상의 칼라 정보를 이용하였다. 칼라정보의 MIN-MAX값을 퍼지화 데이터로 멤버십 함수를 생성한 후, 유사도를 평가하여 피부색 영역과 배경영역을 분리하였다. 얼굴 후보영역에 대하여 CMY 칼라 공간 C 채널에서 눈을 검출하고, YIQ 칼라 공간 Q 채널에서 입을 검출하였다. 지식기반으로 검출된 눈과 입의 특징을 찾아가며 얼굴영역을 추적하였다. 실험영상으로는 10명 각각에 대하여 150프레임의 동영상 총 1,500프레임을 입력받아 실험한 결과, 1,435프레임의 영상에 대하여 움직임 영역이 검출되어 95.7%의 프레임 검출율을 보였으며, 1,401개에 대한 얼굴을 추적 97.6%의 우수한 얼굴 추적결과를 나타내었다.
A tongue shows physiological and clinicopathological changes of inner organs. Visual inspection of a tongue is not only convenient but also non-invasive. To develop an automat ic tongue diagnosis system for an objective and standardized diagnosis, the separation of the tongue are a from a facial image and the detection of coatings, spots and cracks are inevitable but difficult since the colors of a tongue, lips, and skin in a mouth as well as those of tongue furs and body are similar. The propose d method includes preprocessing with down-sampling and edge enhancement, over-segmentation, detecting positions with a local minimum over shading from the structure of a tongue, and correcting local minima or detecting edge with color difference. The proposed method produces the region of a segmented tongue, and then decomposes the color components of the region into hue, saturation and brightness, resulting in classifying the regions of tongue furs(coatings) into kinds of coatings and substance and segmenting them. Spots are detected by using local maxima and the variation of saturation, and cracks are searched by using local minima and the directivity of dark areas in brightness. The results illustrate the segmented region with effective information, excluding a non-tongue region and also give us accurate discrimination of coatings and the precise detection of spots and cracks. It can be used to make an objective and standardized diagnosis for an u-Healthcare system as well as a home care system.
본 논문에서는 디지털 카메라를 이용하여 사진을 촬영할 때 눈의 감긴 상태를 확인하여 이를 자동으로 보정하여 출력해주는 모듈의 구현에 관하여 연구하였다. 먼저 촬영된 영상에 대하여 얼굴 및 눈의 영역을 검출하고 눈의 상태를 인식한다. 만약 눈이 감긴 영상이 촬영되었을 때 버퍼에 임시로 저장된 이전 프레임 영상들에 대하여 눈의 상태를 인식한 후, 가장 눈의 상태가 만족스러운 영상을 이용하여 눈을 보정한 후에 사진을 출력한다. 얼굴 및 눈을 정확하게 인식하기 위해서 SURF 알고리즘과 호모그래피 방법을 적용하여 영상을 보정하는 전처리 과정을 수행한다. 얼굴 영역과 눈 영역을 검출하는 것은 Haar-like feature 알고리즘을 이용하였다. 눈을 뜨고 있는 상태인지 감은 상태인지를 눈의 영역에 대한 템플릿매칭을 이용한 유사도를 판단하여 확인한다. 본 연구에서 개발된 기능을 다양한 형태의 얼굴 환경에서 테스트한 결과 얼굴이 포함된 영상에 대하여 효과적으로 보정이 수행됨을 확인하였다.
IP보안 카메라의 보급으로 원격에서 얼굴인식을 수행함에 있어 서버의 부하를 줄이기 위한 여러 가지 방법들이 구현되고 있다. 본 논문에서는 원격지에 있는 IP 보안 카메라 영상을 얼굴검출기능이 탑재된 DSP 보드를 통해 입력 받아 얼굴검출을 수행 한 후 해당 얼굴영역 이미지를 서버로 전송하여 이를 얼굴인식 분산 처리를 통해 얼굴인식 기능을 수행한다. 결과적으로 전체적인 서버시스템 로드를 상당히 줄이는 성과와 실시간 얼굴 인식처리를 최대 256대의 카메라를 연동하면서 수행할 수 있는 장점을 가지고 있다. 이를 수행할 수 있는 기술은 분산처리 서버기술을 이용하여 한 서버 당 64채널 얼굴인식을 수행하며, 4개 분산처리 서버를 운영할 경우 250여개 카메라 채널을 통한 얼굴검출 결과를 처리하는 성과를 가져올 수 있었다.
얼굴은 사람을 확인할 수 있는 고유한 성질을 갖고 있어 얼굴 인식이 출입통제, 범죄자 검색, 방법용 CCTV 같은 보안 영역과 본인 인증 영역에 활발히 활용되고 있다. 정면 얼굴 영상은 가장 많은 얼굴 정보를 갖고 있어 얼굴 인식을 위해 가능한 정면 얼굴 영상을 취득하는 것이 필요하다. 본 연구에서 하르유사 특징을 이용한 Adaboost 알고리즘을 이용해 얼굴 영역이 검출되고 mean-shift 알고리즘을 이용해 얼굴을 추적한다. 그리고 얼굴 영역에서 눈과 입 같은 얼굴 요소들의 특징점들을 추출해 그들의 기하학적인 정보를 이용해 두 눈의 비와 얼굴의 회전 정도를 계산하고 실시간으로 근사 정면 얼굴 영상을 제시한다.
본 연구에서는 영상처리 기술을 활용한 치과용 로봇 조명장치를 개발하여 그 정확도를 측정하여 보고자 한다. 본 연구를 통해 개발된 치과용 로봇 조명장치는 환자의 얼굴을 카메라로 인식을 하여 구강의 위치를 찾아 로봇이 움직여 라이트를 비추게 하는 것으로서 모션 제어 부, 라이트 제어 부, 영상 처리부로 구성되어 있다. 카메라로 영상을 획득 후 동작변화 영상을 추출 한 다음 아다부스트 알고리즘(Adaboost algorithm)을 통해, 얼굴 검출에 필요한 특징을 추출하여 실시간으로 얼굴 영역을 검출하도록 하였다. 영상처리를 통한 환자 구강의 추출 실험 시 정면영상에서 높은 얼굴인식률을 나타냈고 얼굴영역이 인식이 되면, 안정적인 라이트 로봇 암(Light robot arm)의 제어가 가능했다.
The alignment of facial images is crucial for 2D face recognition. This is the same to facial meshes for 3D face recognition. Most of the 3D face recognition methods refer to 3D alignment but do not describe their approaches in details. In this paper, we focus on describing an automatic 3D alignment in viewpoint of quantitative analysis. This paper presents a framework of 3D face alignment and normalization based on feature points obtained by Active Shape Models (ASMs). The positions of eyes and mouth can give possibility of aligning the 3D face exactly in three-dimension space. The rotational transform on each axis is defined with respect to the reference position. In aligning process, the rotational transform converts an input 3D faces with large pose variations to the reference frontal view. The part of face is flopped from the aligned face using the sphere region centered at the nose tip of 3D face. The cropped face is shifted and brought into the frame with specified size for normalizing. Subsequently, the interpolation is carried to the face for sampling at equal interval and filling holes. The color interpolation is also carried at the same interval. The outputs are normalized 2D and 3D face which can be used for face recognition. Finally, we carry two sets of experiments to measure aligning errors and evaluate the performance of suggested process.
본 연구는 인간발달 과정을 신경과학, 심리학, 운동학습, 근육 생리학 등의 행동과학 자료와 생체역학, 인체운동 분석, 운동조절 기반의 인지 동작치료 프로그램을 정서 행동장애 아동들에게 실시하여 표정에 따른 얼굴 움직임이 감정과 정서변화에 따라 어떤 특성을 갖는지를 표정 움직임의 변화로 정량화 하고자 하였다. 본 연구에서는 영상측정 및 키네마틱 분석의 정서 행동장애 아동의 표정변화를 중재 프로그램 피드백 자료로 활용하였고, 표정 변화를 통해 인지동작 치료프로그램 효과를 알 수 있었다. 또한 정서 및 행동치료의 영상분석과 키네마틱 분석의 정량적 데이터를 통하여 인간발달에 대한 융 복합적 측정 및 분석법을 적용하여 발달장애의 조기발견과 치료과정에 따른 데이터를 축적하는 것도 기대할 수 있었다. 따라서 본 연구의 결과는 아동뿐만이 아니라 자기표현이 부족한 장애와 노인, 환자에게도 확대 적용할 수 있을 것이다.
본 논문은 CCD 칼라 영상을 이용하여 얼굴을 인식할 수 있는 방법을 제안한다. YCbCr 컬러모델에서 피부색에 대한 색상 정보와 적응적인 피부범위 확장을 통하여 얼굴후보영역을 추출하였다. 추출된 얼굴후보영역을 이용하여 곡선전개 방식의 초기곡선으로 사용하여 얼굴영역을 정확히 추출하였다. 얼굴의 특징점을 추출하기 위하여 얼굴영역에서 칼라정보를 이용한 Eye Map과 Mouth Map을 이용하였다. Log-polar변환의 중심점을 얻기 위하여 검출된 얼굴의 특징점을 이용하였다. 특징벡터를 추출하기 위하여 DCT, 웨이브렛 변환을 통하여 추출한 계수들을 이용하였다. 제안된 방법의 타당성을 검토하기 위하여 BP 학습알고리즘을 사용하는 신경망에서 얼굴인식을 수행하였다. 실험결과, 제안한 방법이 입력영상의 회전, 크기변화에 대하여 기존의 방법에 비하여 강인한 인식결과를 얻을 수 있었다.
코로나19는 모두로 하여금 초조하고 불안하게 만들고, 사람들간에는 거리두기가 필요하다. 코로나19로 인해 심리적으로 초조하고 불안 해 지고 거리두기가 필요해졌다. 대학교에서는 학기 초에 정신건강에 대한 단체 평가와 검사가 이루어진다. 본 연구에서는 다층감지기 신경망 모델을 채택하고 훈련시켜 딥러닝을 진행했다. 훈련이 끝난 후, 실제 사진과 동영상을 입력하고, 안면탐지를 진행하고, 표본에 있는 사람의 얼굴 위치를 알아낸 후, 그 감정을 다시 분류하고, 그 표본의 예측한 감정 결과를 그림으로 보여주었다. 결과는 다음과 같다. 테스트 시험에서는 93.2%의 정확도를 얻었고, 실제 사용에서는 95.57%의 정확도를 얻었다. 그중 분노의 식별율은 95%, 혐오의 식별율은 97%, 행복의 식별율은 96%, 공포의 식별율은 96%, 슬픔의 식별율은 97%, 놀라움의 식별율은 95%, 중립의 식별율은 93%이었다. 본 연구의 고효율적 정서 식별 기술은 학생들의 부정적 정서를 포착하는 객관적 데이터를 제공 할 수 있다. 딥러닝의 감정식별 시스템은 심리건강을 향상하기 위한 데이터들을 제공할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.