• Title/Summary/Keyword: face pressure

Search Result 499, Processing Time 0.032 seconds

Crack Analysis of Concrete Gravity Dam subjected to Uplift Pressure using Surface Integral Method (표면적분법을 이용한 양압력이 작용하는 중력식 콘코리트 댐의 균열해석)

  • 진치섭;이영호;엄장섭;김태완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.267-272
    • /
    • 2000
  • The modeling on uplift pressure on the foundation of a dam on which it was constructed, and on the interface between the dam and foundation is a critical aspect in the analysis of concrete gravity dams. The evaluation of stress intensity factor at the crack tip of concrete gravity dam due to uplift pressure effect by surface integral method is performed in this study. The effects of body force, overtopping pressure and water pressure on the crack-face are also considered in this study.

  • PDF

Impacts of Fouling and Cleaning on the Performance of Plate Fin and Spine Fin Heat Exchangers

  • Pak, Bock-Choon;Baek, Byung-Joon;Eckhard A. Groll
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1801-1811
    • /
    • 2003
  • An experimental study was conducted to investigate the effects of air-side fouling and cleaning on the performances of various condenser coils used in unitary air-conditioning systems. A total of six condenser coils with different fin geometry and row number were tested. Performance tests were performed at three different conditions: clean-as-received, after fouling, and after cleaning. In all cases, it was observed that the fouling was mostly confined to the frontal face of the heat exchanger as reported in the previous investigations. The amount of deposited dust was more dependent on fin geometry for the single-row heat exchangers than for the double-row heat exchangers. The predominant effect of fouling was to cause a more significant increase in air-side pressure drop than a degradation in heat transfer performance. For the single-row heat exchangers, the pressure drop increased by 28 to 31%, while the heat transfer performance decreased by 7 to 12% at the standard air face velocity of 1.53 m/s depending on fin shape. For the double-row heat exchangers, the pressure drop increased by 22 to 37%, and heat transfer performance decreased by only 4-5% at the same air face velocity. Once the contaminated coils were cleaned according to the given cleaning procedure the original performance of the heat exchangers could almost be recovered completely. The pressure drop could be restored within 1 to 7% and the heat transfer performance could be recovered to within 1 to 5% of the originally clean heat exchangers. Therefore, it is concluded that a periodic application of the specified cleaning technique will be effective in maintaining the thermal performance of the condenser coils.

Deterministic and reliability-based design of necessary support pressures for tunnel faces

  • Li, Bin;Yao, Kai;Li, Hong
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.35-48
    • /
    • 2020
  • This paper provides methods for the deterministic and reliability-based design of the support pressures necessary to prevent tunnel face collapse. The deterministic method is developed by extending the use of the unique load multiplier, which is embedded within OptumG2/G3 with the intention of determining the maximum load that can be supported by a system. Both two-dimensional and three-dimensional examples are presented to illustrate the applications. The obtained solutions are validated according to those derived from the existing methods. The reliability-based method is developed by incorporating the Response Surface Method and the advanced first-order second-moment reliability method into the bisection algorithm, which continuously updates the support pressure within previously determined brackets until the difference between the computed reliability index and the user-defined value is less than a specified tolerance. Two-dimensional reliability-based support pressure is compared and validated via Monte Carlo simulations, whereas the three-dimensional solution is compared with the relationship between the support pressure and the resulting reliability index provided in the existing literature. Finally, a parametric study is carried out to investigate the influences of factors on the required support pressure.

A Study on Development of High Pressure Hydrogen Injection Valve (직접분사식 고압 수소분사밸브의 개발에 관한 연구)

  • Kim, Yun-Young;Ahn, Jong-Yun;Lee, Jong-Tai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.3
    • /
    • pp.107-117
    • /
    • 2000
  • Ball poppet valve type high pressure hydrogen injection valve actuated by solenoid has been developed for the feasibility of practical use of hydrogen fueled engine with direct injection and the precise control of fuel injection ratio in hydrogen fueled engine with dual injection. The gas-tightness of ball poppet injection valve is improved by the introduction of ball-shaped valve face, valve end typed spherical pair, and valve stem with rotating blade. Ball poppet valve is mainly closed by differential pressure due to the area difference between valve fillet and pressure piston. So, it can be operated by solenoid actuator with small driving force. From the evaluation of ball poppet injection valve, it was found that the gastightness and controlment of this injection valve are better than those of injection valve had been developed before.

  • PDF

Comparison of Aerodynamic Variables according to the Execution Methods of KayPENTAX Phonatory Aerodynamic System Model 6600 (KayPENTAX Phonatory Aerodynamic System Model 6600의 수행방법에 따른 공기역학 변수 비교)

  • Ko, Hyeju;Choi, Hong-Shik;Lim, Sung-Eun;Choi, Yaelin
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.93-99
    • /
    • 2015
  • In case of PAS test, the air is sometimes leaked although the mask is tightly attached to the face, which is not reliable on the measured values. Therefore, this study aimed to assist the clinical practice suggesting the test method of PAS without air leakage. In the healthy subjects with 12 males and 12 females over 19 years old, three types of tests were performed on the voicing efficiency among the protocol of PAS Model 6600. They are; first, to attach the mask tightly to the face holding the handle of PAS with the subject's two hands (Method 1); second, to attach the mask tightly to the face holding the handle of PAS with the subject's one hand and pushing the body of PAS strongly with the other hand (Method 2); and third, to attach the mask tightly to the face pushing the upper part of the mask by the tester when the subject attached the mask to his or her face holding the handle of PAS with two hands (Method 3). Upon the study analyses, the mean negative pressure, the mean phonogram, subglottic air pressure, and voicing efficiency were shown to be statistically significantly different during PAS test in males depending on the methods. (p<.05) In case of females, only the target airflow rate showed significant difference depending on the methods during PAS test. (p<.001) In conclusion, Method 2 enhanced the noise level and strength while Method 1 was likely to leak the air more compared to the other two methods in males. In case of females, Method 1 showed significant leakage of the air flow. Not to allow the air flow leakage without affecting the outcome of PAS test, it will be the most useful for the tester to push the mask to the subject's face tightly (Method 3).

Static Characteristic Analysis of Mechanical Face Seal Used for Boiler Feedwater Pump (보일러 급수 펌프용 미케니컬 페이스 실의 정특성 해석)

  • Kim, Dong-Wook;Jin, Sung-Sik;Kim, Jun-Ho;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.230-239
    • /
    • 2010
  • Mechanical face seal installed in boiler feedwater pump prevents leakage of working fluid using thin fluid film between stator and rotor. If the leakage of working fluid exceeds the allowable volume, serious malfunction of boiler feedwater pump will be happen. The thinner fluid film exists between stator and rotor, the less working fluid leaks out. However, if the thickness of fluid film is not enough, the wear of seal face will be increased. And it causes the decrease in life of mechanical face seal. Therefore appropriate design is necessary to maximize the performance and life of mechanical face seal. In this study, numerical analysis using finite volume method was conducted to investigate the static characteristics of wavy mechanical face seals which have 4 different wavy surface profiles on rotor. As a result, opening force, leakage volume of working fluid and friction torque were obtained. For the same minimum film thickness, the static characteristics of mechanical face seal were affected by the wavy surface profile which can change the thickness of working fluid film and pressure distribution.

Tooth Profile Analysis for Face Gear with 1:2 Gear Ratio in Handpiece with 160° Contra Angle (160도 Contra angle을 갖는 소형 핸드피스용 1:2증속기어의 치형 해석)

  • Choi, Jihun;Ahn, Sukyeong;Park, Sangshin
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.86-91
    • /
    • 2014
  • This paper presents a design procedure for a face gear and pinion used in a handpiece with a $160^{\circ}\acute{y}$ contra angle and 1:2 gear ratio. Based on the geometric theory of gearing, the tooth profile of the face gear and pinion is developed. To analyze the contact pressure, the gear profile should be determined before calculating the stress between the two gears. The concept of calculating the face gear profile is that it can be generated by the coordinate transformation of the shaper profiles, which have involute curves, using a simulation method from the gear manufacturing process.

Effect of Tunnel Advance Rate on the Seepage Forces Acting on the Tunnel Face (터널굴진율이 막장에서의 침투력에 미치는 영향에 관한 연구)

  • 남석우;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.327-333
    • /
    • 2002
  • In this study, the effect of tunnel advance rate on the seepage forces acting on the tunnel face was studied. The finite element program to analyze the groundwater flow around a tunnel with the consideration of tunnel advance rate was developed. Using the program, the parametric study for the effect of the tunnel advance rate and hydraulic characteristics of the ground on the seepage forces acting on the tunnel face was studied. From this study, it was concluded that the tunnel advance rate must be taken into consideration as an additional parameter to assess the seepage forces at the tunnel face and a rational design methodology for the assessment of support pressures required for maintaining the stability of the tunnel face was suggested for underwater tunnels.

  • PDF

Stability analysis of coal face based on coal face-support-roof system in steeply inclined coal seam

  • Kong, Dezhong;Xiong, Yu;Cheng, Zhanbo;Wang, Nan;Wu, Guiyi;Liu, Yong
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.233-243
    • /
    • 2021
  • Rib spalling is a major issue affecting the safety of steeply inclined coal seam. And the failure coal face and support system can be affected with each other to generate a vicious cycle along with inducing large-scale collapse of surrounding rock in steeply inclined coal seam. In order to analyze failure mechanism and propose the corresponding prominent control measures of steeply inclined coal working face, mechanical model based on coal face-support-roof system and mechanical model of coal face failure was established to reveal the disaster mechanism of rib spalling and the sensitive analysis of related factors was performed. Furthermore, taking 3402 working face of Chen-man-zhuang coal mine as engineering background, numerical model by using FLAC3D was built to illustrate the propagation of displacement and stress fields in steeply inclined coal seam and verify the theory analysis as mentioned in this study. The results show that the coal face slide body in steeply inclined working face can be observed as the failure height of upper layer smaller than that of lower layer exhibiting with an irregular quadrilateral pyramid shape. Moreover, the cracks were originated from the upper layer of sliding body and gradually developed to the lower layer causing the final rib spalling. The influence factors on the stability of coal face can be ranked as overlying strata pressure (P) > mechanical parameters of coal body (e.g., cohesion (c), internal fraction angle (φ)) > support strength (F) > the support force of protecting piece (F') > the false angle of working face (Θ). Moreover, the corresponding control measures to maintain the stability of the coal face in the steeply inclined working face were proposed.

Finite Element Analysis of Contact Pressure Behavior in Compression Ring-Oil Film (압축링-유막간의 접촉압력 거동에 관한 유한요소해석)

  • 김청균;김한구;한동철
    • Tribology and Lubricants
    • /
    • v.11 no.4
    • /
    • pp.53-57
    • /
    • 1995
  • The contact pressure behavior is examined by means of a finite element analysis. The oil film between the piston ring and cylinder liner is analyzed on the basis that it behaves like a polymer material. The calculated results indicate that a shape of sloping edge with a straight line, which is designated as a Model III, shows a good performance on the contact pressure behavior for the increased speed. Obviously, the ring face profiles play an important role on the contact pressure between compression ring and oil film.