• Title/Summary/Keyword: extruded length

Search Result 94, Processing Time 0.022 seconds

The study of determination proper nose properties, used for I..L.M constructing economic long spans bridge. (경제성과 장대경간 구성을 구현할 수 있는 I.L.M교량에 사용되는 추진코의 적정제원 산정에 관한 연구)

  • 박상현;이승주;김찬녕;심재수;황의승
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.853-858
    • /
    • 2001
  • The PSC bridge being built by ILM may have greater bending moment during its construction rather than after completion. When it occurs, Engineer should suggest to reduce stress-resultants than to make bigger cross-section with considering stability ,economics, and proper span-to-depth ratio. The used method is to install extruded nose at the end of girder. It substitutes the weighted segment for the light. From the reference, the stiffness of extruded nose, is 1/10 of the main girder, and the length is 60 to 70% of the length of the span, with little justification. In this study, the proper length and stiffness of the nose element is determined by the parametric study and idealizing procedure. The results about the extruded nose through the mixing of the parameter of its stiffness and length, the proper length of extruded nose is 80% of the longest span and the proper stiffenss is 13% of the bending stiffness of the superstructure and the proper length of extruded nose is 70% of the longest span and the proper stiffness is 9.5% of the bending stiffness of the superstructure.

  • PDF

A UBET Analysis on the Lateral Extrusion Process of a Spider (스파이더의 측방 압출 공정에 대한 UBET 해석)

  • 황범철;이희인;배원병
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1129-1133
    • /
    • 2001
  • An upper bound elemental technique(UBET) has been carried out to predict the forming load, the deformation pattern and the extruded length of the lateral extrusion of a spider for the automotive universal joint. For the upper bound analysis, a kinematically admissible velocity field(KAVF) is proposed. From the proposed velocity field, the upper bound load, the deformation pattern and the average length of the extruded billets are determined by minimizing the total energy consumption rate which is a function of unknown velocities at each element. Experiments are carried out with antimony-lead billets at room temperature using the rectangular shaped punch. The theoretical prediction of the forming load, the deformation pattern and the extruded length are good in agreement with the experimental results.

  • PDF

Numerical analysis on the material flow in stepped rod forming (단붙이 로드의 성형에서 소재유동에 관한 해석)

  • Go, Byung-Du;Gang, Dong-Myung;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.43-47
    • /
    • 2008
  • This paper is concerned with the analysis of material flow characteristics of stepped rod forming. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The stepped rod forming is analyzed by using a commercial finite element code. This simulation makes use of stepped rod material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. As radius ratio is large, forming load was reduced but extruded length ratio was increased.

  • PDF

A UBET Analysis of Non-axisymmetric Forward and Backward Extrusion (비축대칭 전후방압출공정의 UBET해석)

  • Lee, Hee-In;Kim, Jin-Kyu;Hwang, Bum-Chul;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.154-161
    • /
    • 2001
  • A UBET analysis has been carried out to predict the forming load and the extruded length of forward and backward extrusion of hexagonal and trochoidal wrench colts. For the upper bound load and the average length of the extruded billets are determined by minimizing the total energy consumption rate which is a function of unknown velocities and parameters at each element. Experiments are carried out with antimony-lead billets at room temperature using hexagonal and trochoidal shaped punches. The theoretical predictions of the forming load and the extruded length are in good agreement with the experimetal results.

  • PDF

A UBET Analysis of the Extrusion/Forging Process of Trochoidally Headed Bars (트로코이드 형상의 머리를 가진 봉의 압출/단조에 관한 UBET해석)

  • Kim, Myung-Hun;Hong, Seung-Jin;Kim, Ho-Yoon;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.96-103
    • /
    • 1999
  • A kinematically admissible velocity field is derived to analyze the forming load and the extruded length in the extrusion/forging process of trochoidally headed bars from round billets. The forming load and the extruded length are obtained by minimizing the total energy-consumption rate. Experiments are carried out with lead billets at room temperature using trochoidally shaped punches. The theoretical predictions of forming load and extruded length are in good agreement with the experimental results.

  • PDF

The Effects of CO2 Injection and Barrel Temperatures on the Physiochemical and Antioxidant Properties of Extruded Cereals

  • Thin, Thazin;Myat, Lin;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.3
    • /
    • pp.271-280
    • /
    • 2016
  • The effects of $CO_2$ injection and barrel temperatures on the physiochemical and antioxidant properties of extruded cereals (sorghum, barley, oats, and millet) were studied. Extrusion was carried out using a twin-screw extruder at different barrel temperatures (80, 110, and $140^{\circ}C$), $CO_2$ injection (0 and 500 mL/min), screw speed of 200 rpm, and moisture content of 25%. Extrusion significantly increased the total flavonoid content (TFC) of extruded oats, and ${\beta}$-glucan and protein digestibility (PD) of extruded barley and oats. In contrast, there were significant reductions in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, PD of extruded sorghum and millet, as well as resistant starch (RS) of extruded sorghum and barley, and total phenolic content (TPC) of all extrudates, except extruded millet. At a barrel temperature of $140^{\circ}C$, TPC in extruded barley was significantly increased, and there was also an increase in DPPH and PD in extruded millet with or without $CO_2$ injection. In contrast, at a barrel temperature of $140^{\circ}C$, the TPC of extruded sorghum decreased, TFC of extruded oats decreased, and at a barrel temperature of $110^{\circ}C$, PD of extruded sorghum without $CO_2$ decreased. Some physical properties [expansion ratio (ER), specific length, piece density, color, and water absorption index] of the extrudates were significantly affected by the increase in barrel temperature. The $CO_2$ injection significantly affected some physical properties (ER, specific length, piece density, water solubility index, and water absorption index), TPC, DPPH, ${\beta}$-glucan, and PD. In conclusion, extruded barley and millet had higher potential for making value added cereal-based foods than the other cereals.

A UBET Analysis on the Lateral Extrusion Process of a Spider (스파이더의 측방 압출 공정에 대학 UBET해석)

  • Lee, Hee-In;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.174-181
    • /
    • 2001
  • An upper bound elemental technique(UBET) has been carried out to predict the forming load, the deformation pattern and the extrude length of the lateral extrusion of a spider for the automotive universal joint. For the upper bound analysis, a kinematically admissible velocity field(KAVF) is proposed. From the proposed velocity field, the upper bound load, the deformation pattern and the average length of the extruded billets are determined by minimizing the total energy consumption rate which is a function of unknown velocities at each element. Experiments are carried out with antimony-lead billets at room temperature using the rectangular shape punch. The theoretical prediction of the forming load, the deformation pattern and the extruded length are good in agreement with the experimental results.

  • PDF

Investigation of the Final-Stage Forward Extrusion of Regular Polygonal-Shaped Bars From Circular Billets Using Square Die (평금형을 이용한 원형 소재에서 다각형바의 최종단계 전방압출에 관한 연구)

  • 김동권;조종래;배원병
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.59-69
    • /
    • 1995
  • A simple kinematically admissible velocity field is proposed to determine the final-stage extrusion load and the average extruded length in the square-die forward extrusion of regular polygonal-shaped bars from circular billets. From the proposed velocity field, the upper-bound extrusion load and the average extruded length are determined by minimizing the total power consumption with respect to four parameters. Experiments have been carried out with hard solder billets at room temperature. The theoretical predictions of the extrusion load are in good agreements with the experimental results and there is generally reason able agreement in average extruded length between theory and experiment.

  • PDF

An Upper-Bound Analysis of the Socket Forming Process (Socket Forming에 관한 상계해석)

  • Hwang, Bum-Chul;Hong, Seung-Jin;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.151-156
    • /
    • 2000
  • A kinematically-admissible velocity field is proposed to determine the forming load the average extruded length and the velocity distribution in the forward and backward extrusion process of a socket. Experiments are carried out with antimony-lead billets at room temperature using the rectangular punch and the hexagonal die. The theoretical predictions of the forming load and the average extruded length are in good agreement with the experimental results.

  • PDF

A UBET Analysis of the Extrusion/Forging Process of Polygonal Headed Bars (다각형의 머리를 가진 봉의 압출/단조 공정에 관한 UBET 해석)

  • Kim, Myung-Hun;Hwang, Bum-Chul;Kim, Ho-Yoon;Bae, Won-Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.110-116
    • /
    • 1999
  • A new KAVF(kinematically-admissible velocity field) is proposed to determine the forming load, the average extruded length and the flow pattern is the extrusion/forging process of polygonal headed bars. Experiments are carried out with lead billets at room temperature using regular polygonal shaped punches. The theoretical predictions of the forming load and the average extruded length are in good agreement with the experimental results.

  • PDF