• Title/Summary/Keyword: extremely wideband

Search Result 17, Processing Time 0.026 seconds

Transversal wideband bandpass filter with a wide stopband and multiple transmission zeros

  • Wang, Li-Tian;Xiong, Yang;Wang, Zhi-Peng;Gong, Li
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.133-140
    • /
    • 2021
  • Herein, we present a compact transversal bandpass filter (BPF) with an extremely wide upper stopband and multiple transmission zeros (TZ). Three signal transmission paths with shorted stubs and open-coupled lines allow signal transmission from input port to output port. Two resonant modes can be excited simultaneously and managed easily for bandpass response. Eleven TZs are achieved via transmission path cancelation; an extremely wide upper stopband with an attenuation level better than -12 dB is achieved up to 11.7 f0, where f0 is the center frequency (CF). In addition, bandwidth and CF can be controlled by adjusting electrical lengths. For proof of concept, a wideband BPF centered at 1.04 GHz with 3 dB fractional bandwidths of 49.2% was designed, fabricated, and evaluated. The overall circuit measures 0.045λg × 0.117λg; good agreement was observed between the measured and simulated results.

Design of Extremely Wideband Printed Semi-circular-shaped Dipole Antenna (초광대역 인쇄형 반원모양 다이폴 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.9
    • /
    • pp.2003-2008
    • /
    • 2013
  • In this paper, a design method for a ultra-wideband printed semi-circular-shaped dipole antenna operating in the band of 1-15 GHz is studied. The effects of the gap between the two arms of the semi-circular-shaped dipole and the radius of the semi-circle on the input reflection coefficient and gain characteristics are examined to obtain the optimal design parameters. The optimized printed semi-circular-shaped dipole antenna is fabricated on an FR4 substrate and the experimental results show that the antenna has a desired extremely wideband characteristic with a frequency band of 1-15 GHz (175%) for a VSWR < 2.

Optimization of Extremely Low Numerical-Dispersion FDTD Method Based on H(2,4) Scheme for Wideband Analysis of Lossy Dielectric (H(2,4) 기법을 기반으로 한 저분산 FDTD 기법의 손실 매질의 광대역 해석을 위한 최적화 방법)

  • Oh, Ilyoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.225-232
    • /
    • 2018
  • This paper proposed the optimization method of the extremely low numerical-dispersion finite-difference time-domain (ELND-FDTD) method based on the H(2,4) scheme for wideband and extremely accurate electromagnetic properties of lossy material, which has a constant conductivity and relative permittivity. The optimized values of three variables are calculated for the minimum numerical dispersion errors of the proposed FDTD method. The excellent accuracy of the proposed method is verified by comparing the calculated results of three different FDTD methods and the analytical results of the two-dimensional dielectric cylinder scattering problem.

On the Ultra-Wideband Ambiguity Function (초광대역 Ambiguity Function에 관한 연구)

  • 이준용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3C
    • /
    • pp.368-373
    • /
    • 2004
  • Extremely fine tine resolution of ultra-wideband (UWB) signal poses a new problems to the system designer. A reasonable accuracy of the system clock is necessary to process signals with such a high space resolution. A useful way of illustrating the time resolution of a signal is to evaluate the ambiguity function. The ambiguity function for carrierless UWB defined using the time mismatch and time scaling factor as its two parameters. The UWB ambiguity function is evaluated for various signaling schemes of impulse radio.

The Interference Measurement Analysis between 3.412 GHz Band Broadcasting System and UWB Wireless Communication System

  • Song Hong-Jong;Kim Dong-Ku
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.76-81
    • /
    • 2006
  • Ultra wideband(UWB) technologies have been developed to exploit a new spectrum resource in substances and to realize ultra-high-speed communication, high precision geo-location, and other applications. The energy of UWB signal is extremely spread from near DC to a few GHz. This means that the interference between conventional narrowband systems and UWB systems is inevitable. However, the interference effects had not previously been studied from UWB wireless systems to conventional wireless systems sharing the frequency bands such as Broadcasting system. This paper experimentally evaluates the interference from two kinds of UWB sources, namely a orthogonal frequency division Multiplex UWB source and an impulse radio UWB source, to a Broadcasting transmission system. The receive power degradations of broadcasting system are presented. From these experimental results, we show that in all practical cases UWB system can coexist 35 m distance in-band broadcasting network.

FR-4 Embedded UWB Filter using Uniform Impedance Resonator (임피던스 공진기를 이용한 FR-4 임베디드 광대역필터)

  • Yang, Chang-S.;Yoon, Sang-K.;Park, Jae-Y.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1471-1475
    • /
    • 2007
  • In this paper, a novel embedded ultra wideband (UWB) band-pass filter is presented on a FR-4 package substrate including high Dk resin coated copper (${\varepsilon}_r=30$) film. The proposed UWB filter is comprised of a parallel resonator with meander-type uniform impedance resonator (UIR) and two series resonators with high Q circular stacked spiral inductor and metal-insulator-metal (MIM) capacitor. In order to obtain excellent attenuation characteristics by generating attenuation poles in lower and upper stop bands, a single MIM capacitor is added to each resonator. The fabricated FR-4 embedded UWB filter has insertion loss of -1.0dB and return loss of -11dB, respectively. It has also extremely wide bandwidth (over 50%) and small size ($3.7{\times}4{\times}0.77\;mm^3$) which is compatible with LTCC devices.

Non-Foster Matching Circuit for Wideband Anti-Jamming Small GPS Antennas (광대역 항재밍 소형 GPS 안테나용 비 포스터 정합회로)

  • Ha, Sang-Gyu;Jung, Kyung-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1112-1115
    • /
    • 2016
  • Global Positioning System(GPS) is a useful system used in both civilian and military applications. However, the signal of GPS is susceptible to jamming attacks due to low receive sensitivity, since the signals come from the satellite located at over 20,000 km above the earth. In this paper, we have conducted a preceding research on a non-Foster matching circuit that efficiently matches an electrically ultra-small GPS antenna. Electrically Small Antennas(ESAs) are inefficient radiators and are difficult to match in wideband due to extremely high quality factor. In order to match small GPS antenna in wideband, a non-Foster matching circuit for a small GPS antenna was designed. A negative impedance converter circuit consisting of Linvill's cross-coupled pair transistors was fabricated and its stability was verified by the time-domain stability analysis. In addition, anechoic chamber measurements show that the non-Foster matching circuit for small GPS antenna can lead bore-sight gain improvement by more than 17 dB.

Analysis and Measurement of Interferences between UWB and Mobile Communication System (UWB 시스템과 이동통신 시스템간의 간섭측정 분석)

  • Kim Myung-Jong;Lee Hyung-Soo;Hong Ic-Pyo;Shin Yong-Sup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.1011-1017
    • /
    • 2004
  • Ultra Wideband(UWB) technologies have been developed to exploit a new spectrum resource in substances and to realize ultra-high-speed communication, high precision geolocation, and other applications. The energy of UWB signal is extremely spread from near DC to a few GHz. This means that the interference between conventional narrowband systems and UWB systems is inevitable. However, the interference effects had not previously been studied from UWB wireless systems to conventional mobile wireless systems sharing the frequency bands such as Korean Cellular CDMA and WCDMA. This paper experimentally evaluates the interference from two kinds of UWB sources, namely a direct-sequence spread-spectrum CDMA(DS-CDMA) UWB source and an impulse radio UWB source, to a Cellular CDMA and WCDMA digital transmission system. The average frame error rate degradation of each system are presented. From these experimental results, the interference effects of DS-CDMA UWB source is not severe compared to the Impulse UWB.

Wideband Low-Reflection Transmission Lines for Bare Chip on Multilayer PCB

  • Ramzan, Rashad;Fritzin, Jonas;Dabrowski, Jerzy;Svensson, Christer
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.335-343
    • /
    • 2011
  • The pad pitch of modern radio frequency integrated circuits is in the order of few tens of micrometers. Connecting a large number of high-speed I/Os to the outside world with good signal fidelity at low cost is an extremely challenging task. To cope with this requirement, we need reflection-free transmission lines from an on-chip pad to on-board SMA connectors. Such a transmission line is very hard to design due to the difference in on-chip and on-board feature size and the requirement for extremely large bandwidth. In this paper, we propose the use of narrow tracks close to chip and wide tracks away from the chip. This narrow-to-wide transition in width results in impedance discontinuity. A step change in substrate thickness is utilized to cancel the effect of the width discontinuity, thus achieving a reflection-free microstrip. To verify the concept, several microstrips were designed on multilayer FR4 PCB without any additional manufacturing steps. The TDR measurements reveal that the impedance variation is less than 3 ${\Omega}$ for a 50 ${\Omega}$ microstrip and S11 better than -9 dB for the frequency range 1 GHz to 6 GHz when the width changes from 165 ${\mu}m$ to 940 ${\mu}m$, and substrate thickness changes from 100 ${\mu}m$ to 500 ${\mu}m$.

A study of the interference measurement analysis between 3.4125GHz band broadcasting system and UWB wireless communication system

  • Song, Hong-Jong
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • Ultra wideband (UWB) technologies have been developed to exploit a new spectrum resource in substances and to realize ultra-high-speed communication, high precision geo-location, and other applications. The energy of UWB signal is extremely spread from near DC (Direct Current) to a few GHz. This means that the interference between conventional narrowband systems and UWB systems is inevitable. However, the interference effects had not previously been studied from UWB wireless systems to conventional wireless systems sharing the frequency bands such as broadcasting system. This paper experimentally evaluates the interference from two kinds of UWB sources, namely an orthogonal frequency division multiplex UWB source and an impulse radio UWB source, to a broadcasting transmission system. The S/N ratio degradation of broadcasting system is presented. From these experimental results, we show that in all practical cases UWB system can be coexisted 35m distance in-band broadcasting network.

  • PDF