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1  |   INTRODUCTION

A compact wideband bandpass filter (BPF) with multi-
ple transmission zeros and wide out-of-band suppression 
free of spurious resonance is in high demand for modern 
wireless communication systems. Because of their per-
fect integration capabilities, microstrip BPFs have been 
studied and developed extensively. However, they gener-
ally suffer from spurious harmonic responses, due to the 
periodic characteristic of transmission lines. Over the 
past few decades, various approaches and structures have 
been proposed to overcome this issue using a high-perfor-
mance BPF that can suppress harmonics without spurious 
resonance.

BPFs with a broad stopband were achieved by cascading 
an additional bandstop filter or low pass filter [1,2]. However, 

with this approach, both circuit size and insertion loss are 
large. By employing an additional defected grounded struc-
ture (DGS), a coupled-line BPF with extended stopband per-
formance was realized [3]. Interdigital capacitance structures 
were applied to suppress harmonics and wide stopband BPFs 
without notch-like characteristics [4]. Another conventional 
attempt employed a stepped-impedance resonator (SIR) to 
push harmonics to higher frequencies. By properly adjust-
ing the characteristic impedance ratio, wideband BPFs using 
quarter-/half-wavelength SIRs were demonstrated with sup-
pressed second- and third-harmonic frequencies [5,6]. To 
obtain BPFs with broad stopband attenuation, transmission 
zeros (TZs) are frequently introduced to suppress harmon-
ics. Using multimode stub-loaded resonators (MMSLR), 
wide harmonics-suppressed BPFs with multiple TZs have 
been achieved [7–9]. Coupled lines also can be applied to 
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construct wideband BPFs with multiple transmission poles 
(TPs) and TZs [10–13], which broadens the upper stopband.

Recently, transversal signal cancelation techniques have 
been used to produce multiple TZs, high selectivity, and 
harmonic suppression [14]. Thus, the design of transversal 
BPFs has attracted much attention [15–20]. Two transmis-
sion paths from input port to output port were designed and 
transversal signal interaction (TSI) BPF with high selectivity 
and harmonic suppression was achieved. Unfortunately, few 
transversal BPFs have more than two transmission paths and 
previous attempts have rarely obtained wideband BPFs with 
wide harmonic suppression without spur-like responses.

In this paper, we present a compact wideband BPF with a 
wide upper stopband based on transversal signal interaction 
concepts. The transversal BPF consists of three transmission 
paths from input port to output port. By deriving the trans-
mission matrix of the presented BPF, design specifications 
are achieved by adjusting the electrical lengths appropriately. 
Multiple TZs are excited by a multi-transmission path in-
teraction in order to achieve sharp skirt selectivity; the ul-
tra-wide upper stopband is excited up to a dozen times the 
center frequency (CF). To verify theoretical predictions and 
demonstrate proof of concept, a compact BPF with 1.04 GHz 
of CF was designed, fabricated, and evaluated. Measured and 
simulated results are in good agreement.

2  |   DESIGN OF WIDEBAND TSI 
BPF

The physical layout of the proposed wideband BPF is shown 
in Figure 1. The proposed transversal wideband BPF com-
prises a shorted T-shaped structure with corresponding 
physical lengths and widths denoted by L1, L2 and W1, W2, 
respectively; a pair of symmetrical shorted stub-loaded reso-
nators (denoted by L3, W3) with parallel coupled lines (la-
beled L4, W4); and an anti-coupled line structure (denoted L5, 
W5 and L6, W6). Figure  2 illustrates the ideal transmission 
line model (TLM) of the BPF. Yn (n = 1, 2, 3, and 5) and θn 
(n = 1, 2, 3, 4, and 6) represent the characteristic admittances 
and electrical lengths of counterpart microstrip line, respec-
tively. As can be observed in Figure  2, three transmission 
paths are adopted to conduct the TSI wideband BPF. The de-
sign methodology is demonstrated using an ABCD matrix.

As shown in Figure 2, the ABCD matrix of an open parallel 
coupled line and microstrip line can be respectively defined as [21]:

It follows that the ABCD matrix of path I can be expressed 
and derived by

(1)MPCL =

[ Zoe+Zoo

Zoe−Zoo

j
−2jZoeZoo cot �4

Zoe−Zoo
2j tan �4

Zoe−Zoo

Zoe+Zoo

Zoe−Zoo

]

(2)
ML3 =

[
cos �3 j sin �3∕Y3

j sin �3Y3 cos �3

]
.

(3)
MPathI =

[
A1 B1

C1 D1

]
=ML3×MPCL×ML3

F I G U R E  1   Geometrical configuration of the proposed TSI 
wideband BPF

F I G U R E  2   An ideal TLM model of the proposed BPF
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where

For transmission path II, the shorted stub-loaded T-shape 
resonator, the ABCD matrix can be obtained as follows

where

Transmission path III contains an anti-coupled line, for 
which the ABCD matrix can be written as

Thus, the ABCD matrix of transmitting path III can be 
deduced from

where

After converting from ABCD-parameters to the ad-
mittance matrix, the Y-matrix of the proposed wideband 
BPF can be defined and calculated from the following 
equations:

where Y ′, Y ′′, and Y ′′′ represents the admittance matrices of 
transmit paths I, II, and III, respectively. Consequently, the 
transmission coefficient and reflection coefficient can be ex-
tracted separately as follows [22]:

(4)
A1 = cos �3

Zoe+Zoo

Zoe−Zoo

+
2 sin �3 cos �3 tan �4

(Zoe−Zoo)Y3

+
2ZoeZoo cot �4 sin �3 cos �3Y3

Zoe−Zoo

−
sin2

�3(Zoe+Zoo)

Zoe−Zoo

,

(5)
B1 = j sin �3 cos �3

Zoe+Zoo

(Zoe−Zoo)Y3

−
2j sin2

�3 tan �4

(Zoe−Zoo)Y2
3

−
2jZoeZoo cos �4 cos2

�3

(Zoe−Zoo)
+

j sin �3 cos �3(Zoe+Zoo)

Y3

,

(6)
C1 =

j sin �3 cos �3Y3(Zoe+Zoo)

Zoe−Zoo

+
2j tan �4 cos2

�3

Zoo−Zoe

×
2jZoeZoo sin2

�3 cot �4

Zoe−Zoo

−
j sin �3 cos �3Y3(Zoe+Zoo)
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,

(7)
D1 =−

sin2
�3(Zoe+Zoo)

Zoe−Zoo

−
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(Zoe−Zoo)Y3

+
2ZoeZoo sin �3 cot �4 cos �3

(Zoe−Zoo)Y3

+
cos2

�3(Zoe+Zoo)

Zoe−Zoo

.

(8)MPathII =
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A2 B2

C2 D2

]
=ML1×Mstub2×ML1

(9)

A2 = cos2
�1+Y2 sin �1 cos �1 tan �2∕Y1−sin2
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jY2 sin2
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Y2
1
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where ΔY = (Y11+Y0)(Y22+Y0)−Y12Y21 and Y0 is 0.02 S. For 
simplicity, θ1 = θ2 = θ4 = 10º, θ3 = θ5 = 30º, and Y1 = Y2 = 
Y3 = Y5 = 0.01 S are assumed. The reference frequency, f0, is 
set as 1.04 GHz to calculate electrical length. The resonant fre-
quencies are solved using (17) and (18) with the numerical cal-
culation method. When S21 = 1, the transmission poles of the 
proposed configuration can be derived and two resonant modes 
can be excited in the neighborhood of the design passband. The 
influence of the TSI wideband BPF primary electrical lengths 
on resonant frequencies is shown in Figures  3 and 4, which 
plot resonant frequencies versus θ1, θ2, θ3, and θ5. Two reso-
nant modes are indicated by f1 and f2. As shown in Figure 3, f1 
decreases with increasing θ1 or θ2, while f2 remains unchanged 
with variation in θ2. Both f1 and f2 shift down as θ3 enlarges, 
whereas θ5 has a very slight effect on f1 and f2, as can be seen in 
Figure 4. Thus, the two resonant modes can be easily controlled 
by selecting proper electrical length values. The centered fre-
quency, f0, and fractional bandwidth, fbw, can be estimated in 
general as below:

where BW represents the bandwidth of BPF. Therefore, a 
suitable zone to achieve design specifications (fbw  =  50%, 
f0 = 1.04) can be found readily in Figures 3 and 4. First, θ1 = 6°, 
θ2 = 4º, and θ3 = 40º are selected, since θ1, θ2, and θ3 have a 
major effect on f1 and f2. Indeed, the two microstrip lines de-
noted by (L1, W1) and (L3,W3) with electrical length θ1 + θ3 ≈ 
45° (reference frequency, 1.04 GHz) are 1/4 λ resonator, which 
serves as the primary physical mechanism for resonance in the 
proposed TSI BPF.

Transmission zeros versus various θ5 and θ6 values 
are shown in Figures 5 and 6. The generation of transmis-
sion zeros is mainly attributed to the cancellation effect of 

multiple transmission paths from input port to output port. 
It can be seen in Figures 5 and 6 that resonant modes f1 and 
f2 remain almost unchanged as θ5 and θ6 vary. By properly 
arranging θ5 and θ6, 11 TZs and a wide stopband of up to 11.7 
f0 can be realized. Thereafter, the design parameters for the 
proposed BPF were chosen as Y1 = Y2 = Y3 = Y5 = 0.01 S and 
θ1 = 6º, θ2 = 4º, θ3 = 40º, θ4 = 8º, θ5 = 2º, θ6 = 10º. Z1 = Z2 = 
Z4 = 115 Ω, Z3 = 45 Ω, and Zn (n = 1, 2, 3, and 4) denote the 
characteristic impedance of each transmission line.

(19)

⎧⎪⎪⎨⎪⎪⎩

BW = f2− f1,

f0 =
f1+ f2

2
,

fbw=BW∕f0,

F I G U R E  3   Resonant frequencies with varying θ1 and θ2

F I G U R E  4   Resonant frequencies versus θ3 and θ5

F I G U R E  5   Resonant modes and TZs versus θ5

14

12

10

8

6

4

2

0

2 4 8 10 12 146

12

10

8

6

4

2

0

F I G U R E  6   Resonant modes and TZs versus θ6

14

12

10

8

6

4

2

0

10 15 20

12

10

8

6

4

2

0

25 30 35 40



      |  137WANG et al.

To assure suitable external coupling strength and desired 
in-band return loss, the desired external quality value is ful-
filled by selecting the proper value of capacitance, C, which 
can be employed as an admittance inverter. As shown in 
Figure 7, capacitance has a minor effect on the transmission 
coefficient, S21, meanwhile changes in the capacitor can effec-
tively manage return loss within the passband. Subsequently, 
the initial value of lumped capacitor was 2.9 pF.

As demonstrated in Figure 8, the S-parameter responses 
of the wideband BPF are simulated using the ideal TLM. 
Two transmission poles form a wideband characteristic. 
Further, unwanted high-order BPF resonant modes can be 
suppressed by introducing 12 TZs. To further investigate 
the physical mechanism to generate TZs, the transmission 
coefficients, S21, of three configurations are compared in 
Figure 9. The shorted stub-loaded resonator (without Path 
III and PCL) retains bandpass characteristics. Current dis-
tribution of the proposed configuration at CF is portrayed 
in Figure 10, which also indicates that Path II is the primary 
transmission path. The purple short-dashed line in Figure 9 
indicates frequency response, which has sharper sidebands 
and improved out-of-band attenuation (this is shown in blue 
in Figure  1 as transmission response (Path I  +  Path II)). 
With three transmission paths, the proposed wideband BPF 
yields more transmission zeros; an extremely wide stop-
band can be realized.

Overall, the mechanism of TZ formation for the trans-
mission characteristic of the shorted stub-loaded resonator is 
attributed shorting of the transmission signal from port 1 to 
port 2 when the input impedance of stubs is zero. Compared 
to the transmission characteristic of the shorted stub-loaded 
resonator, seven additional TZs can be generated via the TSI 
scheme, which results in the cancellation of three signals at 
a certain frequency. Therefore, using TSI concepts, the BPF 
can achieve wider suppression and higher attenuation of the 
upper stopband.

Furthermore, the rejection level for out-of-band suppres-
sion can be modified. Higher suppression can be achieved 

by fine-tuning θ5. Moreover, a wide stopband (up to 7.64 f0 
with attention level of –20 dB) can be obtained at θ5 of 2°, as 
sketched in Figure 11.F I G U R E  7   Relationship between in-band return loss and varied C
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3  |   VALIDATION OF 
FABRICATION AND MEASUREMENT

A wideband BPF was simulated, fabricated, and evaluated 
to verify this theoretical approach. A photograph of the 
fabricated BPF is shown in Figure 12. The proposed filter 
is fabricated on a substrate of Rogers 4003C with a rela-
tive dielectric constant of 3.55, thickness of 0.508 mm, and 
loss tangent of 0.0027. Using a full-wave electromagnetic 
(EM) simulator, the physical dimensions of the BPF were 
optimized as follows: L1 = 3.825, L2 = 2.65, L3 = 24.65, 
L4 = 3.875, L5 = 12.875, L6 = 3.7; W1 = 0.125, W2 = 0.15, 
W3 = 0.6, W4 = 0.6, W5 = 0.125, W6 = 0.125; D = 0.3; g1= 
= 0.2, g2 = 0.9 (units: mm). The wideband filter is com-
pact, measuring 8.1 mm × 21.25 mm (excluding feed lines), 
which corresponds to approximately 0.045 λg × 0.117 λg, 

F I G U R E  1 1   Transmission characteristics versus θ5

F I G U R E  1 2   Photograph of the implemented transversal 
wideband BPF

F I G U R E  1 3   Comparison of EM simulated results and 
measurement results
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T A B L E  1   Performance comparison with previous BPFs

Ref
CF
(GHz)

3-dB
FBW(%) TZs

IL
(dB)

RL
(dB) Poles

Upper
stopband

Circuit Size
(λg × λg)

[7] 3.2 20.6 6 2.2 12.5 6 2.9 f0 (–20 dB) 0.61 × 1.06

[8] 3 43.3 4 0.6 17 4 2.5 f0 (–10 dB) 0.1 × 0.13

[9] 3 87 3 0.6 15.8 4 4.2 f0 (–19.4 dB) 0.31 × 0.73

[11] 2.05 60 5 0.6 20 5 2.7 f0 (–10 dB) 0.48 × 0.24

[12] 1.5 10 5 1.28 20 3 1.6 f0 (–32 dB) 0.27 × 0.22

[13] 2.1 21.9 8 1.52 10 5 3 f0 (–18 dB) 0.28 × 0.39

[15] 3.05 62 8 1.1 15 4 2.7 f0 (–20 dB) 0.625 × 0.16

[16] 3 36.3 2 1.4 15 3 2.8 f0 (–15 dB) 0.39 × 0.19

[18] 2.4/3.7 8/4.6 6 0.3 20 2/2 3.6 f0 (–10 dB) 0.21 × 0.18

[19] 3 50 6 0.4 15 5 2.75 f0 (–14 dB) 0.68 × 0.53

This work 1.04 49.2 11 0.12 26.2 2 11 f0 (–12 dB)/
7.6 f0 (–20 dB)

0.045 × 0.117
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where λg is the guided wavelength of a 50 Ω microstrip 
line at 1 GHz.

Measurements were characterized using an Agilent 
E5071C vector network analyzer. Simulated and measured 
results are plotted in Figure 13. Measured CF is centered 
at 1.04 GHz with a –3 dB fractional bandwidth (FBW) of 
49.2%. The measured insertion loss (IL) is 0.12 dB at cen-
ter frequency, and the return loss (RL) is better than 26 dB. 
Moreover, an ultra-wide upper stopband (up to 11.7 f0) is 
achieved with –12  dB attenuation, due to multiple TZs. 
This work is compared to previously published reports in 
Table 1; by comparison, the proposed wideband BPF has 
an extremely wide stopband, multiple TZs, compact size, 
and low IL.

4  |   CONCLUSION

Herein, we present a transversal wideband BPF based on TSI 
concepts; the BPF was characterized via admittance matrix 
analysis. Multiple TZs were constructed via multi-transmis-
sion path signal cancellation. An extremely wide upper stop-
band of up to 11.7 f0 with a suppression level of −12 dB was 
measured. The designed BPF exhibits many advantages, such 
as compact size, excellent harmonics suppression, and low 
IL, indicating its promise for modern RF and wireless com-
munication systems.
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