• Title/Summary/Keyword: extreme value statistics

Search Result 108, Processing Time 0.023 seconds

Parametric study based on synthetic realizations of EARPG(1)/UPS for simulation of extreme value statistics

  • Seong, Seung H.
    • Wind and Structures
    • /
    • v.2 no.2
    • /
    • pp.85-94
    • /
    • 1999
  • The EARPG(1)/UPS was first developed by Seong (1993) and has been tested for wind pressure time series simulations (Seong and Peterka 1993, 1997, 1998) to prove its excellent performance for generating non-Gaussian time series, in particular, with large amplitude sharp peaks. This paper presents a parametric study focused on simulation of extreme value statistics based on the synthetic realizations of the EARPG(1)/UPS. The method is shown to have a great capability to simulate a wide range of non-Gaussian statistic values and extreme value statistics with exact target sample power spectrum. The variation of skewed long tail in PDF and extreme value distribution are illustrated as function of relevant parameters.

The exponentiated extreme value distribution

  • Cho, Young-Seuk;Kang, Suk-Bok;Han, Jun-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.4
    • /
    • pp.719-731
    • /
    • 2009
  • This paper deals with properties of the exponentiated extreme value distribution. We derive the approximate maximum likelihood estimators of the scale parameter and location parameter of the exponentiated extreme value distribution based on multiply Type-II censored samples. We compare the proposed estimators in the sense of the mean squared error for various censored samples.

  • PDF

A study on the corrosion evaluation and lifetime prediction of fire extinguishing pipeline in residential buildings

  • Jeong, Jin-A;Jin, Chung-Kuk;Lee, Jin Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.828-832
    • /
    • 2015
  • This study is conducted for the evaluation of corrosion and lifetime prediction of fire extinguishing pipelines in residential buildings. The fire extinguishing pipeline is made of carbon steel. Twenty-four samples were selected among all the fire extinguishing pipelines in a building; the selection was based on specimenspositions, pipeline diameters, and pipeline thickness. Analysis was conducted by using the results of visual inspection, electrochemical potentiodynamic anodic polarization test, pitting depth measurements, and extreme value statistics with the Gumbel distribution. The maximum pitting depth and remaining life were statistically predicted using extreme value statistics. During visual inspection, pitting corrosion was observed in several samples. In addition, extreme value statistics demonstrated that there were several pipelines that were very sensitive to pitting corrosion. However, the pitting corrosion was not critical in all the pipelines; thus, it was necessary to change only those pipelines that were severely corroded.

Estimating quantiles of extreme wind speed using generalized extreme value distribution fitted based on the order statistics

  • Liu, Y.X.;Hong, H.P.
    • Wind and Structures
    • /
    • v.34 no.6
    • /
    • pp.469-482
    • /
    • 2022
  • The generalized extreme value distribution (GEVD) is frequently used to fit the block maximum of environmental parameters such as the annual maximum wind speed. There are several methods for estimating the parameters of the GEV distribution, including the least-squares method (LSM). However, the application of the LSM with the expected order statistics has not been reported. This study fills this gap by proposing a fitting method based on the expected order statistics. The study also proposes a plotting position to approximate the expected order statistics; the proposed plotting position depends on the distribution shape parameter. The use of this approximation for distribution fitting is carried out. Simulation analysis results indicate that the developed fitting procedure based on the expected order statistics or its approximation for GEVD is effective for estimating the distribution parameters and quantiles. The values of the probability plotting correlation coefficient that may be used to test the distributional hypothesis are calculated and presented. The developed fitting method is applied to extreme thunderstorm and non-thunderstorm winds for several major cities in Canada. Also, the implication of using the GEVD and Gumbel distribution to model the extreme wind speed on the structural reliability is presented and elaborated.

Goodness-of-fit Test for the Extreme Value Distribution Based on Multiply Type-II Censored Samples

  • Kang, Suk-Bok;Cho, Young-Seuk;Han, Jun-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1441-1448
    • /
    • 2008
  • We propose the modified quantile-quantile (Q-Q) plot using the approximate maximum likelihood estimators and the modified normalized sample Lorenz curve (NSLC) plot for the extreme value distribution based on multiply Type-II censored samples. Using two example data sets, we picture the modified Q-Q plot and the modified NSLC plot.

  • PDF

Estimation for the Generalized Extreme Value Distribution Based on Multiply Type-II Censored Samples

  • Han, Jun-Tae;Kang, Suk-Bok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.817-826
    • /
    • 2007
  • In this paper, we derive the approximate maximum likelihood estimators of the scale parameter and the location parameter in a generalized extreme value distribution under multiply Type-II censoring by the approximate maximum likelihood estimation method. We compare the proposed estimators in the sense of the mean squared error for various censored samples.

  • PDF

Estimation for the extreme value distribution under progressive Type-I interval censoring

  • Nam, Sol-Ji;Kang, Suk-Bok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.643-653
    • /
    • 2014
  • In this paper, we propose some estimators for the extreme value distribution based on the interval method and mid-point approximation method from the progressive Type-I interval censored sample. Because log-likelihood function is a non-linear function, we use a Taylor series expansion to derive approximate likelihood equations. We compare the proposed estimators in terms of the mean squared error by using the Monte Carlo simulation.

A Bayesian Analysis of Return Level for Extreme Precipitation in Korea (한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석)

  • Lee, Jeong Jin;Kim, Nam Hee;Kwon, Hye Ji;Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.947-958
    • /
    • 2014
  • Understanding extreme precipitation events is very important for flood planning purposes. Especially, the r-year return level is a common measure of extreme events. In this paper, we present a spatial analysis of precipitation return level using hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitations and daily precipitation above a high threshold at 62 stations in Korea with generalized extreme value(GEV) and generalized Pareto distribution(GPD), respectively. The spatial dependence among return levels is incorporated to the model through a latent Gaussian process of the GEV and GPD model parameters. We apply the proposed model to precipitation data collected at 62 stations in Korea from 1973 to 2011.

Prediction of extreme rainfall with a generalized extreme value distribution (일반화 극단 분포를 이용한 강우량 예측)

  • Sung, Yong Kyu;Sohn, Joong K.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.857-865
    • /
    • 2013
  • Extreme rainfall causes heavy losses in human life and properties. Hence many works have been done to predict extreme rainfall by using extreme value distributions. In this study, we use a generalized extreme value distribution to derive the posterior predictive density with hierarchical Bayesian approach based on the data of Seoul area from 1973 to 2010. It becomes clear that the probability of the extreme rainfall is increasing for last 20 years in Seoul area and the model proposed works relatively well for both point prediction and predictive interval approach.

Estimation for scale parameter of type-I extreme value distribution

  • Choi, Byungjin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.535-545
    • /
    • 2015
  • In a various range of applications including hydrology, the type-I extreme value distribution has been extensively used as a probabilistic model for analyzing extreme events. In this paper, we introduce methods for estimating the scale parameter of the type-I extreme value distribution. A simulation study is performed to compare the estimators in terms of mean-squared error and bias, and the obtained results are provided.