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Abstract

In a various range of applications including hydrology, the type-I extreme value
distribution has been extensively used as a probabilistic model for analyzing extreme
events. In this paper, we introduce methods for estimating the scale parameter of
the type-I extreme value distribution. A simulation study is performed to compare
the estimators in terms of mean-squared error and bias, and the obtained results are
provided.

Keywords: Bias, generalized probability weighted moments, maximum entropy, max-
imum likelihood, mean-squared error, probability weighted moments, type-I extreme
value distribution.

1. Introduction

Models in extreme value theory are concerned for the statistical behavior of Mn, where
Mn is a sequence of independent random variables X1, X2, . . . , Xn with a common distri-
bution function F . In applications, X ′is usually represent values of a process measured on
a regular time-scale or daily mean temperature so that Mn represents the maximum of the
process over n time units of observations. For all values of n, the distribution of Mn can
be derived exactly as follows: P (Mn ≤ z) = P (X1 ≤ z, . . . ,Xn ≤ z) = {F (z)}n. However,
this is not helpful in practice since F is unknown in many cases. An alternative approach
is to find limit distributions for M∗n rather than Mn, considering the normalized variable
M∗n = (Mn − an) /bn for sequences of constants {an > 0} and {bn > 0}. If there exist
sequences {an} and {bn} such that P (Mn ≤ z) → G (z) as n → ∞, where G is a non-
degenerate distribution function, G belongs to one of the extreme value distributions with
type-I, type-II, and type-III, regardless of F .

The type-I extreme value (EV1) distribution known as the Gumbel distribution has been
extensively used in various research fields such as life testing, water resource management
and hydrology for statistically modeling extreme values. See Hershfield and Kohler (1960),
Stol (1971), Lambert and Duan (1994), and for a comprehensive review of applications, refer
to Johnson et al. (1995). The distribution function of the EV1 distribution is defined by

F (x;µ, β) = exp

{
−exp

(
−x− µ

β

)}
, −∞ < x <∞, −∞ < µ <∞, β > 0, (1.1)
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where µ and β are location and scale parameters, respectively. Differentiating equation (1.1)
with respect to x gives the probability density function

f (x;µ, β) =
1

β
exp

(
−x− µ

β

)
exp

{
−exp

(
−x− µ

β

)}
, (1.2)

where −∞ < x <∞, −∞ < µ <∞ and β > 0.
In applications, one may be interested in estimating the scale parameter of the EV1

distribution. For instance, the entropy introduced by Shannon (1948) as a measure of
uncertainty is commonly used in information-theoretic statistics to develop a diagnostic
tool for model building or model testing. The entropy of the EV1 distribution is given by
H (f) = log β + γ + 1, where γ is Euler’s constant. It relies on having an acceptable sta-
tistical estimator of the scale parameter whether a developed statistical procedure based on
H (f) for model diagnostic is successful or not, and therefore the scale parameter needs to
be estimated precisely, accurately and efficiently. Various methods have been proposed for
estimating the scale parameter and can be found in the literature. See Gumbel (1958) for the
method of moments, Kimball (1949) for the method of maximum likelihood, Landwehr et al.
(1979) for the method of probability weighted moments and Jowitt (1979) for the method
based on the principle of maximum entropy. Nam and Kang (2014) discussed on estimation
for the extreme value distribution under progressive type-I interval censoring.

Recently, Fiorentino and Gabriele (1984) pointed out that the maximum likelihood es-
timator of the scale parameter is biased, and discussed how to reduce its bias. Through a
small scale of simulation, they showed that the suggested bias-corrected maximum likelihood
estimator is nearly unbiased and that its mean-squared error is close to that of the maxi-
mum likelihood estimator. They also compared the mean-squared error performance of the
suggested estimator with the moment estimator, the maximum entropy estimator and the
classical probability weighted moments estimator based on Greenwood et al. (1979)’s estima-
tor. The simulation results reported that the bias-corrected maximum likelihood estimator
has better performance than its competitors. Rasmussen and Gautam (2003) introduced an
estimation method for the location and scale parameters of the EV1 distribution, based on
the generalized probability weighted moments and used them to get an quantile estimator of
the EV1 distribution. They performed a small scale of simulation to compare the performance
of the suggested quantile estimator with that of some quantile estimators, which are based
on the moment estimators, the maximum likelihood estimators and the probability weighted
moments estimators obtained by applying Gringorten (1963)’s formula for the parameters of
the EV1 distribution. The simulated results reported that Rasmussen and Gautam (2003)’s
quantile estimator has slightly better performance than the quantile estimator based on the
probability weighted moments estimators obtained by applying Gringorten (1963)’s formula,
but that it is slightly inferior to its competitor based on the maximum likelihood estimators.
However, Rasmussen and Gautam (2003) did not make a trial of comparing the performance
of the generalized probability weighted moments estimator of the individual EV1 parameter
with that of all available estimators.

In this paper, we consider all estimators available for the scale parameter of the EV1
distribution and investigate their performance in terms of mean-squared error and bias by
means of Monte Carlo simulation. This paper is organized as follows. In Section 2, the
estimators for the scale parameter of the type-I extreme distribution are introduced. In
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Section 3, Monte Carlo simulations are performed to compare the estimators in terms of
mean-squared error and bias. In Section 4, some brief conclusions are provided.

2. Estimation for scale parameter

2.1. Method of moments

Let X be a random variable following the EV1 distribution. The moments of orders 1 and
2, µ1 and µ2, of X are used to get an estimator of β. The moment-generating function of X
is given by MX(t) = Γ (1− βt) eµt. From this, the moment of order 1 is easily obtained as

µ1 = M ′X(0) = µ− β Γ′(1) = µ+ γβ, (2.1)

where Γ′(1) = ψ(1) = −γ and ψ is the digamma function given by ψ(n) = Γ(n)′/Γ(n). By
noting that

M ′′X(t) = β2Γ′′ (1− βt) eµt − 2µβΓ′ (1− βt) eµt + µ2Γ (1− βt) eµt (2.2)

and using the trigamma function defined by ψ′(n) = dψ(n)/dn, the moment of order 2 is
also obtained as

µ2 = M ′′X(0) = β2Γ′′(1) + 2βγµ+ µ2

= β2
{
ψ′(1) + γ2

}
+ 2βγµ+ µ2, (2.3)

where Γ′′(1) = ψ′(1) + γ. From (2.1) and (2.3), we can easily derive the following equation

µ2 − µ2
1 = β2ψ′(1). (2.4)

and solving this equation for β gives

β =

{
µ2 − µ2

1

ψ′(1)

}1/2

. (2.5)

To estimate µ2 and µ1, the sample moments obtained from a sample X1, X2, . . . , Xn, X̄2 =∑n
i=1X

2
i /n and X̄ =

∑n
i=1Xi/n, are used. By replacing µ2 and µ1 with the corresponding

sample moment, β can be estimated by

β̂MM =

{
X̄2 − X̄
ψ′(1)

}1/2

=

{
S2
n

ψ′(1)

}1/2

, (2.6)

where S2
n =

∑n
i=1

(
Xi − X̄

)2
/n = X̄2 − X̄. The calculation of β̂MM is simple, but underes-

timates β.

2.2. Method of maximum likelihood

The log-likelihood function based on a sample X1, X2, . . . , Xn drawn from the EV1 dis-
tribution can be written as

l (µ, β) = −
n∑
i=1

xi − µ
β

− n log β −
n∑
i=1

exp

(
−xi − µ

β

)
. (2.7)
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Differentiating the function (2.7) with respect to µ and β yields the following likelihood
equations:

∂l (µ, β)

∂µ
=

1

β

{
n−

n∑
i=1

exp

(
−xi − µ

β

)}
, (2.8)

∂l (µ, β)

∂β
=

1

β

{
n∑
i=1

xi − µ
β

− n− 1

β

n∑
i=1

xi − µ
β

exp

(
−xi − µ

β

)}
. (2.9)

The solutions of satisfying ∂l (µ, β) /∂µ = 0 and ∂l (µ, β) /∂β = 0 are the maximum likeli-
hood estimator of µ and β.

From the likelihood equation for µ, ∂l (µ, β) /∂µ = 0, it can be obtained that exp (µ/β) =
n/
∑n
i=1 exp (−xi/β). Substituting this quantity into (2.9) and solving ∂l (µ, β) /∂β = 0 give

the following equation containing β only

x̄ = β +

∑n
i=1 xiexp (−xi/β)∑n
i=1 exp (−xi/β)

. (2.10)

The solution satisfying the equation (2.10) becomes the maximum likelihood estimator β̂ML

of β. A shortcoming of the method of maximum likelihood is that β̂ML can be obtained by
employing iterative computational procedures such as the Newton-Raphson method. Also,
β̂ML is biased for β.

Fiorentino and Gabriele (1984) discussed how to reduce the bias of β̂ML. The resulting
bias-corrected maximum likelihood estimator of β is given by

β̂CML =
nβ̂ML

n− 0.8
, (2.11)

where n is sample size.

2.3. Method of maximum entropy

Jowitt (1979) discussed a method for estimating the parameters of the EV1 distribution
based on the principle of maximum entropy. In this method, two parameters µ and β should
be selected to produce E

{
(X − µ) /β

}
= γ and E

[
exp
{
− (X − µ) /β

}]
= 1, where γ is

Euler’s constant given by γ = −ψ(1).
For estimation, the expectations are replaced by the corresponding estimators obtained

from a sample. The resulting equations are given by

1

n

n∑
i=1

Xi − µ
β

= γ,
1

n

n∑
i=1

exp

(
−Xi − µ

β

)
= 1. (2.12)

The estimator β̂ME of β is obtained by solving the equation (2.12). As in the method of
maximum likelihood, iterative computational procedures are needed to get the solution for
β. It is a disadvantage of this method. β̂ME is also biased.

2.4. Method of probability weighted moments

This method proposed by Greenwood et al. (1979) is widely used for estimating param-
eters of distributions. The probability weighted moments of a random variable X with a
distribution function F are defined by
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Mr,s,t = E
{
XrF s (1− F )

t }
, (2.13)

where r, s, and t are real numbers. If F can be expressed in inverse form, the expression
(2.13) can be written as

Mr,s,t =

∫ 1

0

x (F )
r
F s (1− F )

t
dF, (2.14)

where x (F ) is the inverse function of F . As in the method of moments, the estimators for
parameters are obtained by equating the analytical expressions forMr,s,t to sample moments.
In practice, special cases of Mr,s,t are commonly considered and the typical choice is to use

ηt = M1,0,t = E
{
X (1− F )

t }
or θs = M1,s,0 = E (XF s).

The probability weighted moments for the EV1 distribution can be derived as follows. By
using F (x;µ, β) given in (1.1) as F , the inverse function of F can be expressed as

x (F ) = µ− β
{

log (− logF )
}
. (2.15)

The kth order probability weighted moment is obtained as

θk =

∫ 1

0

x (F )F k dF =
1

k + 1

[
µ+ β

{
γ + log (k + 1)

}]
(2.16)

using subsequently the change of variables y = − logF and z = (k + 1) y. In a similar
manner, lth order probability weighted moment θl can be obtained. By taking the ratio of
the resulting two moment equations, θk and θl, the equation for β can be derived as

β =
(k + 1) θk − (l + 1) θl

log (k + 1)− log (l + 1)
. (2.17)

Therefore, an estimator of β is obtained by replacing θk and θl by their estimator.
The estimation of θk based on a sample has been discussed by Greenwood et al. (1979),

Landwehr et al. (1979), Hosking et al. (1985), and Hosking and Wallis (1995). An estimator
of θk proposed by Greenwood et al. (1979), when k is a nonnegative integer, is defined by

θ̂k =
1

n

n∑
i=1

X(i)

(
n− i
k

)
/

(
n− 1

k

)
, (2.18)

where X(i), i = 1, . . . , n, is the ordered sample of X1, X2, . . . , Xn. Landwehr et al. (1979)

showed that θ̂k is unbiased for θk. Hosking et al. (1985) proposed another estimators of θk
and these estimators are given by

θ̂k,1 =
1

n

n∑
i=1

(
i− a
n

)k
X(i), (2.19)

where 0 < a < 1 and

θ̂k,2 =
1

n

n∑
i=1

(
i− a

n+ 1− 2a

)k
X(i), (2.20)
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where −1/2 < a < 1/2. Hosking et al. (1985) proved that θ̂k,1 and θ̂k,2 are consistent for θk
by showing that the estimators (2.19) and (2.20) are asymptotically equivalent to θ̂k.

It is arbitrary to choose values of k and l used to estimate β based on the equation (2.17).
The common practice is to set k = 1 and l = 0, and the equation of β is expressed as

β =
2θ1 − θ0

log 2
. (2.21)

The estimators of θ0 and θ1 obtained from (2.18) are given by

θ̂0 = X̄, (2.22)

θ̂1 =
1

n (n− 1)

n∑
i=1

(i− 1)X(i). (2.23)

Substituting these estimators into (2.21) produces the probability weighted moments esti-
mator of β

β̂PWM =
2θ̂1 − θ̂0

log 2
. (2.24)

In case of using (2.19) or (2.20), the estimator of θ0 can be obtained by θ̂0,1 or θ̂0,2. These
two estimators are equivalent to sample mean X̄. The estimator of θ1, by putting k = 1 in
(2.19) or (2.20), can be also obtained by θ̂1,1 or θ̂1,2. Using these estimators, the parameter
β can be estimated as

β̂1
PWM =

2θ̂1,1 − θ̂0,1
log 2

, (2.25)

β̂2
PWM =

2θ̂1,2 − θ̂0,2
log 2

. (2.26)

Rasmussen and Gautam (2003) suggested the generalized method of probability weighted
moments to estimate the scale parameter of the EV1 distribution. The generalized proba-
bility weighted moments estimator of β is obtained that for −1/2 < a < 1/2 and a real
number m,

β̂GPWM =
1 +m

n

n∑
i=1

[(
i− a

n+ 1− 2a

)m{
1 + (1 +m) log

i− a
n+ 1− 2a

}
X(i)

]
= (1 +m) θ̂m,2 + (1 +m)

2
θ̂log,m, (2.27)

where

θ̂log,m =
1

n

n∑
i=1

(
i− a

n+ 1− 2a

)m(
log

i− a
n+ 1− 2a

)
X(i). (2.28)

The optimal value of m is independent of the parent distribution, but depends on sample size.
Based on simulation results that the values of m that yield minimum mean-squared error
decrease with increasing sample size, they recommended the use of the following decision
rule m = 1.9/n.

The estimators given in (2.24), (2.25), (2.26) and (2.27) have simplicity and robustness,
and can be easily calculated without resort to iterative computational procedures; however,
the remaining 3 estimators except for (2.24) are biased.
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3. Simulation results

In this section, we carry out Monte Carlo simulation to compare the performance of
the estimators in terms of mean-squared error and bias. In the simulation, sample size
is selected as n = 10, 20, 30, 50. Values of µ and β are taken as µ = 0, 1, 2, 4 and β =
0.5, 1, 1.5, 2, 2.5, 3. For each combination of values of n, µ and β, 10000 samples are generated
from an EV1 distribution. For each sample size, 8 estimators of β given in the previous section
are calculated from the samples. For the calculation of β̂1

PWM , β̂2
PWM and β̂GPWM , a choice

of a suitable value of a should be made. For β̂1
PWM , a = 0.35 was used according to Hosking

et al. (1985)’s suggestion. In case of β̂2
PWM and β̂GPWM , a = 0.44 was selected, which is

commonly used as a value of a for the EV1 distribution by Guo (1990). The mean-squared
error and bias of each estimator are estimated using calculated values of the estimators.

Table 3.1 Mean-squared error of the estimators calculated based on 10000 samples generated from the
EV1 distribution with µ = 0, 1

µ β n β̂MM β̂ML β̂CML β̂ME β̂PWM β̂1
PWM β̂2

PWM β̂GPWM

0.5

10 0.0229 0.0166 0.0180 0.0173 0.0220 0.0205 0.0202 0.0202
20 0.0122 0.0080 0.0082 0.0083 0.0104 0.0101 0.0101 0.0095
30 0.0086 0.0053 0.0054 0.0056 0.0070 0.0069 0.0069 0.0062
50 0.0052 0.0032 0.0032 0.0033 0.0041 0.0041 0.0041 0.0036

1

10 0.0923 0.0675 0.0728 0.0700 0.0881 0.0828 0.0819 0.0820
20 0.0493 0.0322 0.0336 0.0338 0.0425 0.0410 0.0407 0.0379
30 0.0341 0.0209 0.0213 0.0222 0.0279 0.0274 0.0273 0.0246
50 0.0202 0.0121 0.0123 0.0128 0.0160 0.0158 0.0158 0.0139

1.5

10 0.2046 0.1491 0.1603 0.1545 0.1938 0.1826 0.1814 0.1816
20 0.1109 0.0734 0.0759 0.0766 0.0948 0.0922 0.0917 0.0864
30 0.0749 0.0470 0.0481 0.0494 0.0616 0.0605 0.0603 0.0548
50 0.0469 0.0279 0.0283 0.0295 0.0367 0.0364 0.0363 0.0319

0

2

10 0.3773 0.2727 0.2940 0.2851 0.3613 0.3377 0.3334 0.3305
20 0.1911 0.1235 0.1276 0.1300 0.1633 0.1584 0.1577 0.1478
30 0.1357 0.0845 0.0863 0.0891 0.1110 0.1091 0.1088 0.0987
50 0.0835 0.0488 0.0496 0.0516 0.0651 0.0642 0.0639 0.0553

2.5

10 0.5763 0.4160 0.4502 0.4348 0.5530 0.5174 0.5109 0.5063
20 0.2989 0.1990 0.2041 0.2064 0.2546 0.2489 0.2485 0.2363
30 0.2161 0.1307 0.1337 0.1386 0.1748 0.1710 0.1701 0.1527
50 0.1301 0.0781 0.0792 0.0822 0.1026 0.1014 0.1012 0.0885

3

10 0.8053 0.5838 0.6262 0.6071 0.7662 0.7207 0.7163 0.7165
20 0.4351 0.2838 0.2921 0.2971 0.3709 0.3611 0.3597 0.3386
30 0.3074 0.1897 0.1942 0.2002 0.2510 0.2462 0.2451 0.2209
50 0.1892 0.1146 0.1159 0.1204 0.1485 0.1470 0.1466 0.1296

0.5

10 0.0231 0.0166 0.0178 0.0173 0.0219 0.0192 0.0204 0.0149
20 0.0123 0.0080 0.0083 0.0084 0.0105 0.0098 0.0101 0.0078
30 0.0083 0.0053 0.0055 0.0056 0.0069 0.0067 0.0068 0.0053
50 0.0053 0.0031 0.0032 0.0033 0.0042 0.0041 0.0041 0.0033

1

10 0.0900 0.0661 0.0706 0.0683 0.0853 0.0758 0.0802 0.0676
20 0.0499 0.0324 0.0334 0.0340 0.0425 0.0401 0.0411 0.0344
30 0.0337 0.0212 0.0217 0.0223 0.0278 0.0268 0.0272 0.0226
50 0.0206 0.0124 0.0125 0.0130 0.0161 0.0157 0.0159 0.0132

1.5

10 0.2095 0.1522 0.1634 0.1588 0.2010 0.1813 0.1876 0.1655
20 0.1092 0.0725 0.0756 0.0761 0.0957 0.0906 0.0914 0.0790
30 0.0743 0.0466 0.0476 0.0489 0.0611 0.0591 0.0598 0.0513
50 0.0470 0.0284 0.0288 0.0299 0.0374 0.0366 0.0368 0.0309

1

2

10 0.3635 0.2671 0.2858 0.2764 0.3435 0.3132 0.3226 0.2966
20 0.1918 0.1293 0.1334 0.1348 0.1670 0.1595 0.1614 0.1439
30 0.1313 0.0818 0.0831 0.0860 0.1077 0.1045 0.1052 0.0914
50 0.0825 0.0501 0.0508 0.0527 0.0653 0.0641 0.0643 0.0550

2.5

10 0.5891 0.4157 0.4513 0.4378 0.5616 0.5080 0.5137 0.4704
20 0.3078 0.2009 0.2091 0.2108 0.2654 0.2527 0.2537 0.2257
30 0.2106 0.1326 0.1366 0.1392 0.1731 0.1678 0.1684 0.1473
50 0.1301 0.0779 0.0791 0.0821 0.1025 0.1005 0.1007 0.0859

3

10 0.8040 0.5787 0.6170 0.6022 0.7608 0.7015 0.7167 0.6748
20 0.4391 0.2905 0.3029 0.3030 0.3788 0.3622 0.3637 0.3268
30 0.3030 0.1868 0.1898 0.1968 0.2452 0.2393 0.2410 0.2122
50 0.1871 0.1116 0.1138 0.1181 0.1482 0.1451 0.1449 0.1233
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Table 3.2 Mean-squared error of the estimators calculated based on 10000 samples generated from the
EV1 distribution with µ = 2, 4

µ β n β̂MM β̂ML β̂CML β̂ME β̂PWM β̂1
PWM β̂2

PWM β̂GPWM

0.5

10 0.0233 0.0168 0.0180 0.0175 0.0220 0.0215 0.0206 0.0140
20 0.0125 0.0081 0.0084 0.0085 0.0106 0.0106 0.0102 0.0076
30 0.0081 0.0051 0.0052 0.0054 0.0066 0.0066 0.0066 0.0049
50 0.0052 0.0031 0.0032 0.0033 0.0041 0.0041 0.0041 0.0031

1

10 0.0895 0.0649 0.0697 0.0675 0.0850 0.0746 0.0796 0.0582
20 0.0491 0.0318 0.0331 0.0333 0.0418 0.0394 0.0401 0.0311
30 0.0335 0.0213 0.0217 0.0223 0.0277 0.0265 0.0271 0.0213
50 0.0206 0.0125 0.0127 0.0132 0.0165 0.0161 0.0161 0.0128

1.5

10 0.2129 0.1525 0.1646 0.1599 0.2040 0.1791 0.1884 0.1494
20 0.1106 0.0726 0.0753 0.0762 0.0951 0.0893 0.0915 0.0744
30 0.0734 0.0469 0.0476 0.0488 0.0598 0.0574 0.0592 0.0488
50 0.0471 0.0271 0.0275 0.0289 0.0365 0.0356 0.0360 0.0290

2

2

10 0.3666 0.2699 0.2892 0.2798 0.3505 0.3111 0.3268 0.2753
20 0.1979 0.1278 0.1325 0.1343 0.1686 0.1590 0.1623 0.1355
30 0.1342 0.0820 0.0840 0.0869 0.1095 0.1054 0.1070 0.0885
50 0.0846 0.0494 0.0502 0.0525 0.0660 0.0644 0.0648 0.0532

2.5

10 0.5834 0.4216 0.4540 0.4396 0.5556 0.4957 0.5150 0.4456
20 0.3068 0.1984 0.2046 0.2087 0.2609 0.2474 0.2528 0.2157
30 0.2117 0.1322 0.1356 0.1391 0.1733 0.1670 0.1684 0.1429
50 0.1287 0.0775 0.0782 0.0817 0.1015 0.0994 0.1003 0.0842

3

10 0.8286 0.5893 0.6313 0.6169 0.7839 0.7047 0.7295 0.6428
20 0.4421 0.2906 0.2997 0.3047 0.3800 0.3612 0.3674 0.3196
30 0.3053 0.1890 0.1930 0.1991 0.2490 0.2409 0.2436 0.2083
50 0.1877 0.1125 0.1144 0.1188 0.1482 0.1450 0.1453 0.1221

0.5

10 0.0232 0.0166 0.0177 0.0173 0.0219 0.0375 0.0204 0.0252
20 0.0121 0.0080 0.0083 0.0084 0.0104 0.0143 0.0101 0.0107
30 0.0082 0.0051 0.0053 0.0054 0.0068 0.0086 0.0066 0.0067
50 0.0051 0.0030 0.0031 0.0032 0.0040 0.0046 0.0039 0.0037

1

10 0.0939 0.0671 0.0718 0.0702 0.0886 0.0870 0.0826 0.0564
20 0.0493 0.0319 0.0329 0.0336 0.0422 0.0419 0.0408 0.0298
30 0.0350 0.0214 0.0218 0.0227 0.0284 0.0282 0.0278 0.0209
50 0.0206 0.0122 0.0124 0.0128 0.0160 0.0161 0.0158 0.0122

1.5

10 0.2040 0.1487 0.1624 0.1548 0.1982 0.1780 0.1811 0.1268
20 0.1089 0.0727 0.0750 0.0759 0.0940 0.0890 0.0910 0.0681
30 0.0748 0.0469 0.0479 0.0492 0.0614 0.0591 0.0604 0.0459
50 0.0480 0.0283 0.0286 0.0301 0.0378 0.0370 0.0374 0.0288

4

2

10 0.3602 0.2625 0.2815 0.2722 0.3425 0.2997 0.3188 0.2335
20 0.2020 0.1301 0.1344 0.1374 0.1722 0.1614 0.1665 0.1279
30 0.1348 0.0842 0.0861 0.0887 0.1108 0.1062 0.1080 0.0847
50 0.0842 0.0501 0.0507 0.0531 0.0663 0.0646 0.0652 0.0517

2.5

10 0.5760 0.4085 0.4343 0.4264 0.5357 0.4686 0.5058 0.3847
20 0.3072 0.1986 0.2059 0.2081 0.2607 0.2446 0.2514 0.1996
30 0.2162 0.1282 0.1313 0.1367 0.1738 0.1665 0.1687 0.1331
50 0.1288 0.0770 0.0777 0.0812 0.1011 0.0986 0.1000 0.0804

3

10 0.8211 0.5983 0.6423 0.6229 0.7879 0.6915 0.7324 0.5824
20 0.4417 0.2845 0.2940 0.2993 0.3745 0.3518 0.3626 0.2933
30 0.3011 0.1910 0.1958 0.2008 0.2498 0.2395 0.2433 0.1988
50 0.1873 0.1100 0.1113 0.1166 0.1467 0.1431 0.1449 0.1171

Simulated results are provided in Table 3.1-3.2, and the following observations can be
drawn from the results:

1) For given n and µ, the mean-squared error of the estimators shows a tendency to
increase as β increases. Also, large values of both µ and β result in large mean-squared error
of the estimators for all values of sample size. For given µ and β, the mean-squared error of
the estimators decreases as n increases.

2) The mean-squared error of the moment estimator β̂MM is observed to be larger than

that of the other estimators for all sample sizes. From it, we can see that β̂MM has very poor
performance. It is noticeable that the difference of the mean-squared error between β̂MM

and its competitors diminishes as sample size increases, but on the contrary the performance
of β̂MM becomes worse since the mean-squared error efficiency of β̂MM is observed to be
lower for larger values of n.
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3) The mean-squared error of the maximum likelihood estimator β̂ML shows a tendency

to be smaller than that of the other estimators in many cases. In case of β̂CML, its mean-
squared error is nearly the same as that of β̂ML and smaller than that of β̂ME except for
some cases. β̂ME produces smaller mean-squared error than β̂CML for rather small sample
size (n = 10). It is noteworthy that β̂ML takes larger mean-squared error than β̂GPWM

when (µ, β) = (1, 0.5) , (2, 0.5) , (2, 1) , (4, 1) , (4, 1.5) , (4, 2). From the results obtained by
the additional simulation works (not presented in this paper), we observed that the mean-

squared error of β̂ML is larger than that of β̂GPWM when 0.25 ≤ β/µ < 0.75. A similar

observation is made for β̂CML and β̂ME .
4) The probability weighted moments estimators and the generalized probability weighted

moments estimator, generally, yield larger mean-squared error than the maximum likeli-
hood, the bias-corrected maximum likelihood and the maximum entropy estimators. Among
β̂PWM , β̂1

PWM , β̂2
PWM and β̂GPWM , we can see that β̂GPWM produces the smallest mean-

squared error. In addition, it appears that β̂GPWM shows better performance than β̂ML in
case where 0.25 ≤ β/µ < 0.75. β̂1

PWM has smaller mean-squared error than β̂2
PWM ; however,

two estimators show no great difference in mean-squared error, as sample size increases.
5) On the whole, β̂ML and β̂CML show good performance, and β̂ME is comparable to

these two estimators. The probability weighted moments estimators do not have better
performance than β̂ML, β̂CML and β̂ME . In case of β̂GPWM , its performance is observed to
be the best of all estimators for 0.25 ≤ β/µ < 0.75. It is also observed that β̂MM does not
outperform all estimators in all cases.

(a) µ = 1, β = 1 (b) µ = 4, β = 2

Figure 3.1 Calculated bias of the estimators based on 10000 samples generated from
the EV1 distribution
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Figure 3.1 displays the bias of 8 estimators obtained by Monte Carlo simulation with
10000 repetitions. The bias values of all estimators show a trend to decrease as sample
size increases. For all sample sizes, the bias values of β̂CML (CMLE) and β̂PWM (PWME)
show nearly the same, and the values are observed to be considerably smaller than those
of the other estimators. β̂1

PWM (PWME1) has larger bias than β̂CML (CMLE) and β̂PWM

(PWME), but produces smaller bias than the remaining 5 estimators. It appears that the

bias of β̂ME (MEE) is slightly smaller than that of β̂ML (MLE). Smaller values of sample

size result in large bias of β̂ME (MEE) and β̂ML (MLE), and a similar observation is made

for β̂MM (MME), β̂2
PWM (PWME2) and β̂GPWM (GPWME).

4. Conclusion

In this paper, we introduced the estimators of the scale parameter of the type-I extreme
value distribution and examined their performance in terms of mean-squared error and bias
through simulation. From the results we have made the following observations:

The moment estimator showed very poor performance across all cases. It appeared that in
many cases, the performance of the maximum likelihood and the bias-corrected maximum
likelihood estimators is good and nearly the same. The performance of the maximum entropy
estimator is compared favorably with that of these two estimators. In general, the probabil-
ity weighted moments estimators did not outperform their competitors except for the mo-
ment estimator. The generalized probability weighted moments estimator by Rasmussen and
Gautam (2003) was observed to be better performance than the other probability weighted
moments estimators. Moreover, it surpassed all estimators in performance for the case where
0.25 ≤ β/µ < 0.75. The bias-corrected maximum likelihood estimator and the probability
weighted moments estimator base on Greenwood et al. (1979)’s estimator yielded nearly the
same values of bias, and these values appeared considerably smaller than those of the other
estimators. The remaining estimators except for these two estimators produced large bias
for small sample size, but as sample size increases, their bias showed a trend to diminish to
a great extent.

The method of maximum likelihood is the most popular and efficient one for estimating
parameters; however, there is no explicit solution for getting the estimator of the scale
parameter of the EV1 distribution by solving the likelihood equation. This leads to use
iterative computational procedures such as the Newton-Raphson method for computation.
Further, the maximum likelihood estimator does not always surpass all of the estimators of
the scale parameter in performance. On the other hand, the generalized probability weighted
moments estimator has advantages that it has simplicity and robustness, and that it can
be easily calculated without resort to iterative computational procedures. Moreover, the
estimator has the superiority in performance over the maximum likelihood estimator for
considerable cases. Therefore, we expect that the generalized probability weighted moments
estimator can be used in application as an alternative of the maximum likelihood estimator.
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