• 제목/요약/키워드: extreme loads

검색결과 209건 처리시간 0.026초

도시철도 정거장의 종합 건전성 감시시스템 개발방향 (Introduction of the Intelligent Health Surveillance System for Urban Transit Station)

  • 신정열;안태기;박기준;김진호;이우동
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1248-1253
    • /
    • 2007
  • Urban transit or subway stations generally service for a long period of several decades. And, the urban transit or subway is public transportation which lots of people takes every day. During the service time, they are inevitably damaged from environmental corrosion, material aging, fatigue, and the coupling effects with long-term loads and extreme loads. The included damage accumulates and performance degenerates due to the above factors. They would inevitably reduce the resisting capacity of station against the disaster; even they result in collapse with the structural failure under extreme loads. And, if disaster such as earthquake, fire, etc. happens, it causes huge property damage and threatens the human lives. Because of these above reasons, the intelligent health surveillance system should be researched and developed for ensuring the safety of station. In this paper, the research plans of the intelligent health surveillance system of urban transit station are presented. And also, the development or establishment directions of this system are suggested.

  • PDF

풍력터빈 출력예측 및 극한하중평가에 관한 연구 (A Study on the Ultimate Load Assessment and the Performance Prediction of a Wind Turbine)

  • 김범석;음학진;김만응
    • 대한기계학회논문집B
    • /
    • 제33권5호
    • /
    • pp.326-333
    • /
    • 2009
  • Design life-time of a wind turbine is required to be at least 20 years. In the meantime, the wind turbine will experience a lot of load cases such as extreme loads and fatigue loads which will include several typhoons per year and extreme gusts with 50 years recurrence period as well as endless turbulence flow. Therefore, IEC61400-1 specifies design load cases to be considered in the wind turbine design and requires the wind turbine to withstand the load cases in various operational situations. This paper investigates the ultimate loads which the wind turbine will experience for 20 years and their characteristics based on the IEC61400-1 using an aero-elastic software, GH-Bladed. And the performance characteristics of a wind turbine such as electrical power generation and annual energy yield are also investigated.

Non-Gaussian approach for equivalent static wind loads from wind tunnel measurements

  • Kassir, Wafaa;Soize, Christian;Heck, Jean-Vivien;De Oliveira, Fabrice
    • Wind and Structures
    • /
    • 제25권6호
    • /
    • pp.589-608
    • /
    • 2017
  • A novel probabilistic approach is presented for estimating the equivalent static wind loads that produce a static response of the structure, which is "equivalent" in a probabilistic sense, to the extreme dynamic responses due to the unsteady pressure random field induced by the wind. This approach has especially been developed for complex structures (such as stadium roofs) for which the unsteady pressure field is measured in a boundary layer wind tunnel with a turbulent incident flow. The proposed method deals with the non-Gaussian nature of the unsteady pressure random field and presents a model that yields a good representation of both the quasi-static part and the dynamical part of the structural responses. The proposed approach is experimentally validated with a relatively simple application and is then applied to a stadium roof structure for which experimental measurements of unsteady pressures have been performed in boundary layer wind tunnel.

수평축 풍력터빈 출력예측 및 극한하중평가 (Ultimate Load Assessment and Performance Prediction of a Horizontal Axis Wind Turbine)

  • 김범석;김만응;음학진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2880-2885
    • /
    • 2008
  • Design lifttime of a wind turbine is required to be at least 20 years. In the meantime, the wind turbine will experience a lot of load cases such as extreme loads and fatigue loads which will include several typhoons per year and extreme gusts with 50 years recurrence period as well as endless turbulence flow. Therefore, IEC61400-1 specifies design load cases to be considered in the wind turbine design and requires the wind turbine to withstand the load cases in various operational situations. This paper investigates the ultimate loads which the wind turbine will experience for 20 years and their characteristics based on the IEC61400-1 using an aero-elastic software, GH-Blade. And the performance characteristics of a wind turbine such as electrical power generation and annual energy yield are also investigated.

  • PDF

유탄성 응답을 고려한 수직 실린더에 작용하는 극한 파랑 충격력 수치해석 (Numerical Computations on Extreme Wave Loads on a Vertical Cylinder Considering Hydroelastic Response)

  • 경조현;홍사영;김병완
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 추계학술대회 논문집(제1권)
    • /
    • pp.195-201
    • /
    • 2006
  • 해양구조물에 유기되는 파랑력과 해양파에 의한 해양구조물의 운동특성에 대한 연구는 선형이론에 근거한 통계적인 방법에 의해 꾸준히 연구되어왔다. 이러한 연구는 선형이론의 제한성으로 인해 파 스펙트럼의 극한에 해당하는 극한파에 대해서는 적용하기 어려운 점이 있다. 본 연구에서는 간단한 구조물에 대하여 극한파에 의한 파랑력을 추정하는 수치기법을 개발하였다. 극한파는 선형 파랑 집중법을 이용하여 수치적으로 구현하여 바닥면에 고정된 수직 실린더에 작용하는 파랑력을 추정하였다. 또한 수직 실린더의 유탄성 응답을 고려하여 강체인 경우와 탄성체의 경우에서 극한파에 의한 파랑력 변화를 고찰하였다.

  • PDF

Springing을 고려한 TLP의 장력 예측 기법 연구 (Study on Prediction Method for Spring-Induced Tension Responses of TLP)

  • 김태영;김용환
    • 한국해양공학회지
    • /
    • 제28권5호
    • /
    • pp.396-403
    • /
    • 2014
  • This paper considered the prediction of the tension force in the design of a TLP tendon, particularly focusing on the springing problem. Springing is an important parameter that exerts a large tension in special cases. It is a nonlinear phenomenon and requires the 2nd-order wave loads to solve. In this paper, a new prediction method for springing and the resultant extreme tension on the tendon of a TLP is introduced. Using the 2nd-order response function computed using the commercial program WADAM, the probability density function of the 2nd-order tension is obtained from an eigenvalue analysis using a quadratic transfer function and sea spectra. A new method is then suggested to predict the extreme tension loads with respect to the number of occurrences. It is shown that the PDF suggested in this study properly predicts the extreme tension in comparison with the time histories of the 2nd-order tension. The expected tension force is larger than that from a linear analysis in the same time windows. This supports the use of the present method to predict the tension due to springing.

FAST, GH Bladed 및 CFD기법을 이용한 5MW 해상풍력터빈 시스템 설계하중조건 해석 및 비교 (Design Load Case Analysis and Comparison for a 5MW Offwhore Wind Turbine Using FAST, GH Bladed and CFD Method)

  • 김기하;김동현;곽영섭;김수현
    • 한국유체기계학회 논문집
    • /
    • 제18권2호
    • /
    • pp.14-21
    • /
    • 2015
  • Design lifetime of a wind turbine is required to be at least 20 years. The most important step to ensure the deign is to evaluate the loads on the wind turbine as accurately as possible. In this study, extreme design load of a offshore wind turbine using Garrad Hassan (GH) Bladed and National Renewable Energy Laboratory (NREL) FAST codes are calculated considering structural dynamic loads. These wind turbine aeroelastic analysis codes are high efficiency for the rapid numerical analysis scheme. But, these codes are mainly based on the mathematical and semi-empirical theories such as unsteady blade element momentum (UBEM) theory, generalized dynamic wake (GDW), dynamic inflow model, dynamic stall model, and tower influence model. Thus, advanced CFD-dynamic coupling method is also applied to conduct cross verification with FAST and GH Bladed codes. If the unsteady characteristics of wind condition are strong, such as extreme design wind condition, it is possible to occur the error in analysis results. The NREL 5 MW offshore wind turbine model as a benchmark case is practically considered for the comparison of calculated designed loads. Computational analyses for typical design load conditions such as normal turbulence model (NTM), normal wind profile (NWP), extreme operation gust (EOG), and extreme direction change (EDC) have been conducted and those results are quantitatively compared with each other. It is importantly shown that there are somewhat differences as maximum amount of 18% among numerical tools depending on the design load cases.

광섬유센서 및 USN 기술의 지하역사 구조건전성 감시시스템 적용방안 연구 (Introduction of the Structural Health Monitoring System with Fiber Optic Sensor & USN for Subway Station)

  • 신정열;안태기;이우동;한석윤
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.224-231
    • /
    • 2008
  • A subway or an underground railway is one of the representative public transportations which lots of people take everyday. Then, subway station, which is also one of the very important public civil infrastructures, generally services for a long period of time. During the service time of stations, they are easily damaged from environmental corrosion, material aging, fatigue, and the coupling effects with long-term loads and extreme loads. Recently, civil construction work on the places near station often creates lots of damages to the station. As these damages accumulate, the performance of station degenerates due to the above factors. They would inevitably reduce the resisting capacity of station against the disaster; even they bring into the collapse of stations with the structural failure under long-term loads and extreme loads. And, if disaster such as earthquake, fire, etc. happens, it causes huge property damage and threatens the human lives. Because of these above reasons, the structural health monitoring system need to be developed for ensuring the safety of station. In this paper, the development directions of the structural health monitoring system with fiber optic sensor and USN for subway station are briefly described.

  • PDF

Assessment of the directional extreme wind speeds of typhoons via the Copula function and Monte Carlo simulation

  • Wang, Jingcheng;Quan, Yong;Gu, Ming
    • Wind and Structures
    • /
    • 제30권2호
    • /
    • pp.141-153
    • /
    • 2020
  • Probabilistic information regarding directional extreme wind speeds is important for the precise estimation of the design wind loads on structures. A joint probability distribution model of directional extreme typhoon wind speeds is established using Monte Carlo simulation and empirical copula function to fully consider the correlations of extreme typhoon wind speeds among the different directions. With this model, a procedure for estimating directional extreme wind speeds for given return periods, which ensures that the overall risk is distributed uniformly by direction, is established. Taking 5 typhoon-prone cities in China as examples, the directional extreme typhoon wind speeds for given return periods estimated by the present method are compared with those estimated by the method proposed by Cook and Miller (1999). Two types of directional factors are obtained based on Cook and Miller (1999) and the UK standard's drafting committee (Standard B, 1997), and the directional risks for the given overall risks are discussed. The influences of the extreme wind speed correlations in the different directions and the simulated typhoon wind speed sample sizes on the estimated extreme wind speeds for a given return period are also discussed.