• Title/Summary/Keyword: extreme loads

Search Result 209, Processing Time 0.023 seconds

An anti-noise real-time cross-correlation method for bolted joint monitoring using piezoceramic transducers

  • Ruan, Jiabiao;Zhang, Zhimin;Wang, Tao;Li, Yourong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.281-294
    • /
    • 2015
  • Bolted joint connection is the most commonly used connection element in structures and devices. The loosening due to external dynamic loads cannot be observed and measured easily and may cause catastrophic loss especially in an extreme requirement and/or environment. In this paper, an innovative Real-time Cross-Correlation Method (RCCM) for monitoring of the bolted joint loosening was proposed. We apply time reversal process on stress wave propagation to obtain correlation signal. The correlation signal's peak amplitude represents the cross-correlation between the loosening state and the baseline working state; therefore, it can detect the state of loosening. Since the bolt states are uncorrelated with noise, the peak amplitude will not be affected by noise and disturbance while it increases SNR level and increases the measured signals' reliability. The correlation process is carried out online through physical wave propagation without any other post offline complicated analyses and calculations. We implemented the proposed RCCM on a single bolt/nut joint experimental device to quantitatively detect the loosening states successfully. After that we implemented the proposed method on a real large structure (reaction wall) with multiple bolted joint connections. Loosening indexes were built for both experiments to indicate the loosening states. Finally, we demonstrated the proposed method's great anti-noise and/or disturbance ability. In the instrumentation, we simply mounted Lead Zirconium Titanate (PZT) patches on the device/structure surface without any modifications of the bolted connection. The low-cost PZTs used as actuators and sensors for active sensing are easily extended to a sensing network for large scale bolted joint network monitoring.

Flexural Performance Evaluation of HPFRCC Using Hybrid PVA Fibers (하이브리드 PVA 섬유를 이용한 HPFRCC의 휨 성능 평가)

  • Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.753-756
    • /
    • 2008
  • HPFRCC (High-Performance Fiber Reinforced Cementitious Composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of using PVA(polyvinyl alcohol) fibers, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCC. In this study, therefore, compressive and flexural tests were implemented to evaluate the compressive and flexural capacities of HPFRCC while the total fiber volume fractions was fixed at 2% and two different PVA fibers were used with variable fiber volume fractions to control the micro-crack and macro-crack with short and long fibers, respectively. Moreover, specimens reinforced with steel and PVA fiber simultaneously were also tested to estimate their behavior and finally find out the optimized mixture. In the result of these experiments, the specimen consists of 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed other specimens. When a little steel fibers added to the mixture with 2% PVA fibers, the flexural capacity was increased, however, when high steel fiber volume fractions applied, the flexural capacity was decreased.

  • PDF

Analysis of TDM-based Ad Hoc Network Transmission Technologies (다중시간분할 방식 기반의 에드혹 망 전송기술 분석)

  • Chung, Jong-Moon;Cho, Hyung-Weon;Jin, Ki-Yong;Cho, Min-Hee;Kim, Ji-Hyun;Jeong, Wun-Cheol;Joo, Seong-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.618-624
    • /
    • 2009
  • In the evolution from wireless sensor networks(WSNs) to ubiquitous sensor networks(USNs), technologies that can support intensive data-traffic loads, large number of users, improved interoperability, and extreme longevity are required. Therefore, efficient communication time coordination control and low power consumption becomes one of the most important design goals for USN MAC protocols. So far several time division multiplexed (TDM) MAC protocols have been proposed. However, since the pros and cons of existing protocols are not easy to analyze, it becomes a challenging task to design improved TOM MAC protocols. Based on this objective, this paper provides a novel protocol analysis along with a message complexity derivation and comparison of the existing TDM MAC protocols.

Numerical modeless of the damage, around inclusion in the orthopedic cement PMMA

  • Mohamed, Cherfi;Smail, Benbarek;Bouiadjra, Bachir;Serier, B.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.717-731
    • /
    • 2016
  • In orthopedic surgery and more especially in total arthroplastie of hip, the fixing of the implants generally takes place essentially by means of constituted surgical polymer cement. The damage of this materiel led to the fatal rupture and thus loosening of the prosthesis in total hip, the effect of over loading as the case of tripping of the patient during walking is one of the parameters that led to the damage of this binder. From this phenomenon we supposed that a remain of bone is included in the cement implantation. The object of this work is to study the effect of this bony inclusion in the zones where the outside conditions (loads and geometric shapes) can provoke the fracture of the cement and therefore the aseptic lousing of the prosthesis. In this study it was assumed the presence of two bones -type inclusions in this material, one after we analyzed the effect of interaction between these two inclusions damage of damage to this material. One have modeled the damage in the cement around this bone inclusion and estimate the crack length from the damaged cement zone in the acetabulum using the finite element method, for every position of the implant under the extreme effort undergone by the prosthesis. We noted that the most intense stress position is around the sharp corner of the bone fragment and the higher level of damage leads directly the fracture of the total prosthesis of the hip.

A Study of Predicting 3-dimensional Welding Residual Stresses Distribution for T-joint Fillet Specimen (십자형 용접 시편의 3차원 용접 잔류응력 분포 예측에 관한 연구)

  • Yoo, Mi-Ji;Lee, Jang-Hyun;Hwang, Se-Yun;Kim, Kyung-Su;Kim, Sung-Chan
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.84-90
    • /
    • 2010
  • Fillet welding accounts for about 80% of all constructing process of ship and ocean structure. T-joint is one of the typical shapes which are frequently reported to experience the fatigue damage when the marine structure meets the storm loads. The fatigue damage is affected by the magnitude of residual stresses on the weld. Recently, many shipping registers and design guidances have required that the fatigue strength assessment method should be compensated by the effect of the residual stress in case that the random loading or storm loading is applied to the marine vessels. This study suggests the computational procedure to analyze the residual stresses of T-joint specimen that is frequently reported to get damaged by the storm loading. Experiment by XRD as well as the 3-D computational welding model is presented in order to get the profile of residual stress. Throughout the comparison of experimental result with the computational result, the computational model was validated. Thereafter, characteristics of he residual stresses in the joint are discussed.

Partial Confinement Utilization for Rectangular Concrete Columns Subjected to Biaxial Bending and Axial Compression

  • Abd El Fattah, Ahmed M.;Rasheed, Hayder A.;Al-Rahmani, Ahmed H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.135-149
    • /
    • 2017
  • The prediction of the actual ultimate capacity of confined concrete columns requires partial confinement utilization under eccentric loading. This is attributed to the reduction in compression zone compared to columns under pure axial compression. Modern codes and standards are introducing the need to perform extreme event analysis under static loads. There has been a number of studies that focused on the analysis and testing of concentric columns. On the other hand, the augmentation of compressive strength due to partial confinement has not been treated before. The higher eccentricity causes smaller confined concrete region in compression yielding smaller increase in strength of concrete. Accordingly, the ultimate eccentric confined strength is gradually reduced from the fully confined value $f_{cc}$ (at zero eccentricity) to the unconfined value $f^{\prime}_c$ (at infinite eccentricity) as a function of the ratio of compression area to total area of each eccentricity. This approach is used to implement an adaptive Mander model for analyzing eccentrically loaded columns. Generalization of the 3D moment of area approach is implemented based on proportional loading, fiber model and the secant stiffness approach, in an incremental-iterative numerical procedure to achieve the equilibrium path of $P-{\varepsilon}$ and $M-{\varphi}$ response up to failure. This numerical analysis is adapted to assess the confining effect in rectangular columns confined with conventional lateral steel. This analysis is validated against experimental data found in the literature showing good correlation to the partial confinement model while rendering the full confinement treatment unsafe.

Design of Large-scale Drilled Shaft (대구경 현장타설말뚝의 설계 사례)

  • Im, Chul-O;Choi, Young-Seok;Kwak, Ki-Seok;Jang, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.545-553
    • /
    • 2009
  • A lot of long-span marine bridge, which connects land to island or island to island, are being designed and constructed lately in south-west coast in South Korea. In the past, caisson foundations in marine were mainly adopted in construction and stability aspect, however, nowadays with development of pile construction technology, drilled shaft foundations are mainly adopted. As the long span cable stayed bridge and suspension bridge applied with lots of loads are being designed, the scale of pile foundations are getting larger. As the construction cost of substructure including foundation in marine bridges is too high, the appropriate evaluation of the axial bearing capacity of pile becomes a core factor to decide the construction cost of foundation if the drilled shaft is adopted as foundation type of bridge. The evaluation values of skin friction and end bearing capacity of drilled shaft in weathered rock suggested in south Korea are only to introduce the foreign specifications, and most of them are designed in a kind of hard soil layer. Also the allowable load of pile section is less than the expected bearing capacity of pile in the soil condition since the allowable capacity of pile is undervalued. Recently in order to improve this factor the bi-axial hydraulic load test of pile was taken, the data of load transfer analysis of pile, unit of skin friction and end bearing capacity are accumulated. In our country, the design of piles are made with ASD, however, LRFD considering service, strength and extreme state was adopted in Incheon Grand Bridge implemented with BTL, and the research to systematize the resistance coefficient appropriate at home country are being progressed.

  • PDF

A Preliminary Study on the Ice-induced Fatigue in Ice-going Ships (빙 해역 운항선박의 빙 유기 피로문제에 대한 기초연구)

  • Hwang, Mi-Ran;Kwon, Yong-Hyun;Lee, Tak-Kee
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.303-309
    • /
    • 2016
  • As commercialization of the Arctic sea route and resource developments are regularized, demands for ice-breaking tankers, LNG carriers, and offshore plants are expected to increase. In addition, the existing ice-breaking cargo ships navigating in the ice-covered waters are worn out. Hence, the construction of new ships is likely to be undertaken for both current and long-term applications. The design of ships navigating in ice-covered waters demands conservative methods and strict development standards owing to the extreme cold and collision tendencies with ice floes and/or icebergs. ISO 19906 recently stated that a fatigue limit should be defined when designing Arctic offshore structures such that the ice-induced fatigue becomes one of the important design drivers. Thus, establishing systematic measures to mitigate ice-induced fatigue problems in ice-breaking ships are important from the viewpoint of having a competitive advantage. In this paper, the issues relating to ice-induced fatigue problems, based on data and published literature, are examined to describe the criticality of ice-induced fatigue. Potential fatigue damage possibilities are investigated using data measured in the Arctic Ocean (2013) and using the Korean icebreaker, ARAON.

Probabilistic Approach for Fighter Inlet Hammershock Design Pressure (전투기 흡입구 해머쇼크 설계압력에 대한 확률론적 접근법)

  • Bae, Hyo-gil;Lee, Hoon Sik;Kim, Yun-mi;Jeong, In Myon;Lee, SangHyo;Cho, Dae-yeong
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.72-78
    • /
    • 2019
  • Inlet hammershock is the critical loads condition for designing the inlet duct structure of a fighter. The sudden flow reduction in engine compressor causes inlet hammershock with high pressure. The traditional method was used to combine extreme conditions (maximum speed, sea level altitude, and cold day) to analyze this compression wave inlet hammershock pressure. However, after the 90s there have been papers that presented the probabilistic approach for the inlet hammershock to achieve the appropriate design pressure. This study shows how to analyze the inlet hammershock pressure by making practical use of the Republic of Korea Air Force real flight usage data under probabilistic approach and then analyze approximately 30% decreased inlet hammershock pressure compared with the traditional valve.

Blast Analysis and Damage Evaluation for Reinforced Concrete Building Structures (RC Building 구조물의 폭발해석 및 손상평가)

  • Park, Yang Heum;Yun, Sung-Hwan;Jang, Il Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.331-340
    • /
    • 2021
  • The blast damage behavior of reinforced concrete (RC) structures exposed to unexpected extreme loading was investigated. To enhance the accuracy of numerical simulation for blast loading on RC structures with seven blast points, the calculation of blast loads using the Euler-flux-corrected-transport method, the proposed Euler-Lagrange coupling method for fluid-structure interaction, and the concrete dynamic damage constitutive model including the strain rate-dependent strength and failure models was implemented in the ANSYS-AUTODYN solver. In the analysis results, in the case of 20 kg TNT, only the slab member at three blast points showed moderate and light damage. In the case of 100 kg TNT, the slab and girder members at three blast points showed moderate damage, while the slab member at two blast points showed severe damage.