• 제목/요약/키워드: external tube

검색결과 284건 처리시간 0.022초

Experimental investigation of natural bond behavior in circular CFTs

  • Naghipour, Morteza;Khalili, Aidin;Hasani, Seyed Mohammad Reza;Nematzadeh, Mahdi
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.191-207
    • /
    • 2022
  • Undoubtedly, the employment of direct bond interaction between steel and concrete is preceding the other mechanisms because of its ease of construction. However, the large scatter in the experimental data about the issue has hindered the efforts to characterize bond strength. In the following research, the direct bond interaction and bond-slip behavior of CFTs with circular cross-section were examined through repeated load-reversed push-out tests until four cycles of loading. The influence of different parameters including the diameter of the tube and the use of shear tabs were assessed. Moreover, the utilization of expansive concrete and external spirals was proposed and tested as ways of improving bond strength. According to the results section dimensions, tube slenderness, shrinkage potential of concrete, interface roughness and confinement are key factors in a natural bond. Larger diameters will lead to a considerable drop in bond strength. The use of shear tabs by their associated bending moments increases the bond stress up to eight times. Furthermore, employment of external spirals and expansive concrete have a sensible effect on enhancing bonds. Macro-locking was also found to be the main component in achieving bond strength.

용접조립 각형 CFT 기둥-보 외다이아프램 접합부의 구조특성 (Structural Characteristics of Welded Built-up Square CFT Column to Beam Connections with External Diaphragm)

  • 이성희;정헌모;김대중;김진호;최성모
    • 한국강구조학회 논문집
    • /
    • 제20권6호
    • /
    • pp.711-722
    • /
    • 2008
  • 기존 콘크리트충전 각형강관(CFT) 구조에 사용하는 각형강관은 4개의 판을 용접하여 제작하는 박스칼럼이 일반적이다. 그러나 이러한 강관은 제작효율이 저하되며, 또한 기둥-보 접합부에는 내측 다이아프램과 관통 다이아프램을 용접하는데 특수한 용접기술이 필요하다. 따라서, 얇은 강판을 절곡하는 방식으로 응력집중 위치의 용접을 피하고, 단면효율이 극대화된 내부앵커 돌출형의 각형강관을 개발하게 되었다. 본 연구에서는 이 개발된 강관의 기둥-보 접합부로 외다이아프램형식을 채택하고. 보 플랜지의 응력 전달을 명확히 하기 위한 기둥-보 접합부 상세를 확 정하고자 이 접합부에 대한 단순인장 실험체를 제작하여 성능평가 실험을 수행하였다. 이 실험을 통해 콘크리트충전 기둥-보 접합부의 기둥-보 플랜지 용접 유무, 기둥-다이아프램 용접량, 콘크리트 충전유무, 다이아프램 설치 기둥과 일반기둥의 비교 등에 따른 인장영역 응력분포 및 내력평가를 진행하고 내부 앵커와 콘크리트 사이의 합성효과를 파악하였다.

방전에 의한 프라즈마에서의 마이크로파 전파특성 (The Properties of Microwave Propagation in Discharging Plasma)

  • 양인응;노방현;김봉열
    • 대한전자공학회논문지
    • /
    • 제5권3호
    • /
    • pp.31-39
    • /
    • 1968
  • 외부자계가 가해진 냉프라즈마에서의 마이크로파 전파 특성을 측정하였다. 직류방전프라즈마는 두 전극판을 구형도파관에 삽입한것과, 또한 유리시설관을 구형도파관에 삽입한 것에서 이루어졌다. 마이크로파 전파방향, 방전관축, 외부자계는 각각 수직이고, 자속밀도, 방전유기, 기체압등이 증가할때 프라즈마를 전파하는 마이크로파의 감쇠 및 흡수는 증가함을 보았다.

  • PDF

A Study of The Novel External Electrode Fluorescent Lamp For High Optical Efficiency

  • Yoon, Ji-Su;Jung, Kyu-Bong;Kim, Hyung-Dong;Kang, Jae-Kyung;Kim, Jae-Bum;Jeong, Byoung-Koan;Ahn, Byung-Chul;Yeo, Sang-Deog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1412-1414
    • /
    • 2006
  • We study on the Electro Optical Properties of the EEFL (External Electrode Fluorescent Lamp) Backlight system is based on the lamp type characteristics and diameter of the lamp tube under the equal manufacturing of the lamps. In this contribution, through the analysis of the different lamp type and diameter of the lamp tube gain the effective luminance and reduce the lamp voltage from aspect in the electro optical properties with EEFL and LCD backlight system.

  • PDF

보텍스튜브 성능향상을 위한 유입노즐 조건에 관한 연구 (Inflow Nozzle Conditions for Improving Vortex Tube Performance)

  • 최훈기;유근종;임윤승
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.68-76
    • /
    • 2018
  • A vortex tube is a simple energy separating device that splits a compressed air stream into a cold and hot stream without any external energy supply or chemical reactions. The efforts of many researchers and designers have been focused on improvement of vortex tube efficiency by changing the parameters affecting vortex tube operation. The effective parameters are nozzle specifications and inflow pressure conditions. Effects of different nozzle cross-sectional area and number of nozzles are evaluated by computational fluid dynamics (CFD) analysis. In this study, CFD analysis of 3-D steady state and turbulent flow through a vortex tube was performed. We investigated the cold air mass flow rate, the cold air temperature, and the cold air heat transfer rate behavior of a vortex tube by utilizing seven straight nozzles and four inflow pressure conditions.

Numerical investigation on ballooning and rupture of a Zircaloy tube subjected to high internal pressure and film boiling conditions

  • Van Toan Nguyen;Hyochan Kim;Byoung Jae Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2454-2465
    • /
    • 2023
  • Film boiling may lead to burnout of the heating element. Even though burnout does not occur, the heating element is subject to deformation because it is not sufficiently strong to withstand external loads. In particular, the ballooning and rupture of a tube under film boiling are important phenomena in the field of nuclear reactor safety. If the tube-type cladding of nuclear fuel ruptures owing to high internal pressure and thermal load, radioactive materials inside the cladding are released to the coolant. Therefore, predicting the ballooning and rupture is important. This study presents numerical simulations to predict the ballooning behavior and rupture time of a horizontal tube at high internal pressure under saturated film boiling. To do so, a multi-step coupled simulation of conjugated film boiling heat transfer and ballooning using creep model is adopted. The numerical methods and models are validated against experimental values. Two different nonuniform heat flux distributions and four different internal pressures are considered. The three-step simulation is enough to obtain a convergent result. However, the single-step simulation also successfully predicts the rupture time. This is because the film boiling heat transfer characteristics are slightly affected by the tube geometry related to creep ballooning.

Condensation Heat Transfer Coefficients of Flammable Refrigerants on Various Enhanced Tubes

  • Park Ki-Jung;Jung Dongsoo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권10호
    • /
    • pp.1957-1963
    • /
    • 2005
  • In this study, external condensation heat transfer coefficients (HTCs) of six flammable refrigerants of propylene (RI270), propane (R290), isobutane (R600a), butane (R600), dimethylether (RE170), and HFC32 were measured at the vapor temperature of $39^{\circ}C$ on a 1023 fpm low fin and Turbo-C tubes. All data were taken under the heat flux of $32\~116\;and\;42\~142kW/m^2$ for the low fin and Turbo-C tubes respectively. Flammable refrigerants' data obtained on enhanced tubes showed a typical trend that external condensation HTCs decrease with increasing wall subcooling. HFC32 and DME showed up to $30\%$ higher HTCs than those of HCFC22 due to their excellent thermophysical properties. Propylene, propane, isobutane, and butane showed similar or lower HTCs than those of HCFC22. Beatty and Katz' correlation predicted the HTCs of the flammable refrigerants obtained on a low fin tube within a mean deviation of $7.3\%$. Turbo-C tube showed the best performance due to its 3 dimensional surface geometry for fast removal of condensate.

Uni-axial behaviour of normal-strength CFDST columns with external steel rings

  • Dong, C.X.;Ho, J.C.M.
    • Steel and Composite Structures
    • /
    • 제13권6호
    • /
    • pp.587-606
    • /
    • 2012
  • Concrete-filled-steel-tubular (CFST) columns have been well proven to improve effectively the strength, stiffness and ductility of concrete members. However, the central part of concrete in CFST columns is not fully utilised under uni-axial compression, bending and torsion. It has small contribution to both flexural and torsion strength, while it can be replaced effectively by steel with smaller area to give similar load-carrying capacity. Also, the confining pressure in CFST columns builds up slowly because the initial elastic dilation of concrete is small before micro-crackings of concrete are developed. From these observations, it is convinced that the central concrete can be effectively replaced by another hollow steel tube with smaller area to form double-skinned concrete-filled-steel-tubular (CFDST) columns. In this study, a series of uni-axial compression tests were carried out on CFDST and CFST columns with and without external steel rings. From the test results, it was observed that on average that the stiffness and elastic strength of CFDST columns are about 25.8% and 33.4% respectively larger than CFST columns with similar equivalent area. The averaged axial load-carrying capacity of CFDST columns is 7.8% higher than CFST columns. Lastly, a theoretical model that takes into account the confining effects of steel tube and external rings for predicting the uni-axial load-carrying capacity of CFDST columns is developed.

원형관의 내면정밀가공용 순환식 자기입자분사가공 시스템 개발 (Development of Magnetic Abrasive Jet Machining System for Precision Internal Polishing of Circular Tubes)

  • 강윤희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 추계학술대회 논문집
    • /
    • pp.24-29
    • /
    • 1995
  • A recently developed finishing process using rotating magnetic field is known to be very efficient for the finishing of parts such as vacuum tube, sanitary tube, etc., which are difficult to be finished by the conventional finishing methods as they are generally curbed tubes. But, the finishing system using rotating magnetic field have the defect that is the cross section of workpiece only circle because of internal rotating tool. Therefore, new finishing process of the workpieces which cross section are not circle is important and required. magnetic abrasive jet machining is a new concept finishing process. It is the precision internal finishing method using working fluid mixed with magnetic abrasives, which is jetted into the internal surface of tube. And magnetic poles are equipped on external surface of tube. In this study new concept finishing process or, magnetic abrasive jet machining system was developed. machining condition was predicted using simulation and some characteristics of the finishing process was analyzed.

  • PDF

주파수-진공도를 이용한 3전극-1방전간극 무성방전형 오존발생기의 오존생성 상승 효과 특성 (The Characteristics of Ozone Generation Synergy Effect for 3 Electrode-1 Discharge Gap Silent Discharge Type Ozonizer using Frequency-Vacuum)

  • 송현직
    • 조명전기설비학회논문지
    • /
    • 제19권8호
    • /
    • pp.94-101
    • /
    • 2005
  • 본 논문에서는 3개의 전극(중심전극, 내부전극 및 외부전극)과 1개의 방전간극(내부전극과 외부전극 사이의 방전간극)으로 구성된 무성방전형 오존발생기를 설계 제작하였다. 진공방전관내에 장착한 중심전극과 내부전극에 2개의 교류 고주파 고전압을 각각 인가하고 외부전극을 공통접지함으로써 방전간극에서 무성방전에 의하여 오존이 생성되는 구조이다. 이때 방전관의 진공도, 전원장치의 주파수, 방전전력 및 산소원료가스 유량 변화에 따른 방전특성과 오존생성특성을 연구 검토하였다. 그 결과 방전관의 진공도와 전원장치의 주파수가 높을수록 오존생성특성이 상승하였으며 최대 7,700[ppm], 460[mg/h] 및 70[g/kwh]의 오존을 얻을 수 있었다.