• Title/Summary/Keyword: external load

Search Result 1,332, Processing Time 0.028 seconds

Technological Development Trends for Underground Safety in Urban Construction (도심지 공사시 지하안전 확보를 위한 기술개발 동향)

  • Baek, Yong;Kim, Woo Seok
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.343-350
    • /
    • 2017
  • Amid increasingly saturated ground space, development of underground space has been booming throughout the world and excavation has been underway near the structure above or under the ground level. But the ground subsidence caused by improper or poor construction technologies, underground water leakage, sudden changes of stratum and the problem with earth retaining system component has been emerged as hot social issue. To deal with such problems nationwide, establishment of preventive and proactive disaster management and rapid restoration system has been pushed now. In this study, collection of the data on technology development trend to secure the underground safety was made, taking into account of internal change elements (changing groundwater level, damage to underground utilities, etc) and external change elements (vehicle load, earthquake and ground excavation, etc) during excavation. Amid the growing need of ground behavior analysis, ground subsidence evaluation technology, safe excavation to prevent ground subsidence and reinforcement technology, improvement of rapid restoration technology in preparation for ground subsidence and development of independent capability, this study is intended to introduce the technology development in a bid to prevent the ground subsidence during excavation. It's categorized into prediction/evaluation technology, complex detect technology, waterproof reinforcement technology, rapid restoration technology and excavation technology which, in part, has been in process now.

Finite Element Analysis of CFRP Frame under Launch and Recovery Conditions for Subsea Walking Robot, Crabster (다관절 복합이동 해저로봇에 적용된 탄소섬유 복합소재 프레임에 대한 진수 및 인양 조건에서의 구조해석)

  • Yoo, Seong-Yeol;Jun, Bong-Huan;Shim, Hyungwon;Lee, Pan-Mook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.419-425
    • /
    • 2014
  • This study applied finite element analysis (FEA) to the body frame of the 200-meter class multi-legged subsea walking robot known as Crabster (CR200). The body frame of the CR200 is modeled after the ribcage of a human so that it can disperse applied external loads. It is made of carbon-fiber-reinforced plastic (CFRP). Therefore, the frame is lighter and stronger than it would be if it were made of other conventional materials. In order to perform FEA for the CFRP body frame, we applied the material properties of the CFRP as obtained from a specimen test to an FE model of CFRP frame. Finally, we performed FEA with respect to the load conditions encountered when the robot is launched into and recovered from the sea. Also, we performed FEA for the frame, assuming that it was fabricated using a conventional material, in order to compare its characteristics with CFRP.

Seismic Performance Evaluation of Masonry Walls Retrofitted with Semi-buried Lattice Reinforcement (조적식 구조물의 부분 매입식 격자철근 보강기법의 내진 성능 평가)

  • Kim, Sang Hyo;Choi, Moon Seock;Park, Se Jun;Ahn, Jin Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.88-98
    • /
    • 2011
  • Masonry structure is a style of building which has been widely applied as residential facilities of low and middle stories, commercial and public facilities etc. But it is possible to destroy by loss of adhesive strength or sliding when lateral forces, such as earthquake, occurs. This study proposes a seismic retrofit method for masonry structure and its seismic performance is demonstrated by shaking table test. Two specimens per each shaking direction were made, having out-of-plane(weak axis) and in-plane(strong axis) direction. External load of 1 ton was also applied for each specimen during the test, to model the behavior of reinforced masonry wall. As a result of shaking table tests, it is shown that the specimen applying the proposed seismic retrofit method showed acceptable behaviors in both of Korea building design criteria(0.14g) and USA seismic criteria suggested by IBC(0.4g). However, it was observed that stiffness of the specimen toward out-of-plane was rapidly decreasing when seismic excitations over 0.14g were loaded. In comparison of relative displacements, maximum relative displacement of specimens which were accelerated toward out-of-plane with 0.4g at once was 29~31% of maximum relative displacement when specimens were gradually accelerated from 0.08g to 0.4g, while the maximum relative displacement of specimens accelerated toward in-plane has similar value in both cases. Therefore, it is concluded that the wall accelerated toward out-of-plane is more affected by hair crack or possible fatigues caused by seismic excitation.

Effect of Implant Preload on the Marginal Bone Stresses Studied by Three Dimensional Finite Element Aanalysis (임플란트 고정체와 지대주 간의 전하중 크기가 골응력에 미치는 영향에 대한 유한요소해석)

  • Nam, Hyo-Jun;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.2
    • /
    • pp.127-138
    • /
    • 2012
  • This study is to assess the effect of preload level on the stress development at the marginal cortical bone surrounding implant neck. A finite element model was created for a single implant placed in the lower jaw bone. An external load of 100N was applied on the top of abutment at 30 degree with the implant axis in lingo-buccal direction. Five different preloads, i.e. 0, 200, 400, 600, 800N were applied to the abutment stem to investigate if and/or how the preload affects on the marginal bone stress. Differences in the marginal bone stress were recorded depending on the level of preload. On the other hand, the tensile stress on the marginal cortical bone decreased in models of higher preload. Preloads between abutment/fixture can increase compressive stresses in the marginal cortical bone although the amount may be insignificant as compared to those generated by functional forces.

Ultimate Compressive Strength-Based Safely and Reliability Assessment of the Double Skin Upper Deck Structure (압축최종강도(壓縮最終强度)를 기준으로한 이중갑판구조(二重甲板構造)의 안전성(安全性) 및 신뢰성(信賴性) 평가(評價))

  • Jeom-K. Paik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.150-168
    • /
    • 1991
  • A practical procedure for the ultimate compressive strength-based safety and reliability assessment of the double skin upper deck structure is described. The external compressive stress acting on the upper deck structure which is due to the still water and wave-induced sagging moment is approximately estimated by using the existing rule of classification society. The ultimate compressive stress of double skin structure under the action of sagging moment is analyzed by using idealized structural unit method. Here an idealized plate element subjected to uniaxial load is formulated by idealizing the nonlinear behaviour of the actual element taking account of the initial imperfections in the form of initial deflection and welding residual stress. The interaction effect between the local and global failure in the structure is also taken into consideration. The accuracy of the present method is verified comparing with the present solution and the existing numerical and experimental results for unit member and welded box columns. The safety of the structure is evaluated using the concept of conventional central safety factor and the reliability assessment is made by using Cornel's MVFOSM method. The present procedure is then applied to upper deck structure of double skin product oil carrier. The influence of the initial imperfections and the yield stress of the material on the safety and reliability of the structure is investigated.

  • PDF

Dynamic Constrained Force of Tower Top and Rotor Shaft of Floating Wind Turbine (부유식 해상 풍력 발전기의 Tower Top 및 Rotor Shaft에 작용하는 동적 하중 계산)

  • Ku, Nam-Kug;Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.455-463
    • /
    • 2012
  • In this study, we calculate dynamic constrained force of tower top and blade root of a floating offshore wind turbine. The floating offshore wind turbine is multibody system which consists of a floating platform, a tower, a nacelle, and a hub and three blades. All of these parts are regarded as a rigid body with six degree-of-freedom(DOF). The platform and the tower are connected with fixed joint, and the tower, the nacelle, and the hub are successively connected with revolute joint. The hub and three blades are connected with fixed joint. The recursive formulation is adopted for constructing the equations of motion for the floating wind turbine. The non-linear hydrostatic force, the linear hydrodynamic force, the aerodynamic force, the mooring force, and gravitational forces are considered as external forces. The dynamic load at the tower top, rotor shaft, and blade root of the floating wind turbine are simulated in time domain by solving the equations of motion numerically. From the simulation results, the mutual effects of the dynamic response between the each part of the floating wind turbine are discussed and can be used as input data for the structural analysis of the floating offshore wind turbine.

Behavior of Reinforced Concrete Inclined Column-Beam Joints (철근콘크리트 경사기둥-보 접합부의 거동)

  • Kwon, Goo-Jung;Park, Jong-Wook;Yoon, Seok-Gwang;Kim, Tae-Jin;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.147-156
    • /
    • 2012
  • In recent years, many high-rise buildings have been constructed in irregular structural system with inclined columns, which may have effect on the structural behavior of beam-column joints. Since the external load leads to shear and flexural forces on the inclined columns in different way from those on the conventional vertical columns, failure mode, resistant strength, and ductility capacity of the inclined column-beam joints may be different than those of the perpendicular beam-column joints. In this study, six RC inclined beam-column joint specimens were tested. The main parameter of the specimens was the angle between axes of the column and beam (90, 67.5, and 45 degree). Test results indicated that the structural behavior of conventional perpendicular beam-column joint was different to that of the inclined beam-column joints, due to different loading conditions between inclined and perpendicular beam-column joints. Both upper and lower columns of perpendicular beam-column joints were subjected to compressive force, while the upper and lower columns of the inclined beam-column joints were subjected to tensile and compressive forces, respectively.

Inelastic Nonlinear Analysis of Arch Truss and Space Truss Structures (아치 트러스 및 공간 트러스 구조의 비탄성 비선형 거동해석)

  • Kim, Kwang-Joong;Jung, Mi-Roo;Kim, Yeon-Tae;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.47-58
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane force by reducing the influence of bending moment, and it maximizes the effectiveness of structural system. With this character of the spatial structure, generally long span is used. As a result, large deflection is accompanied from the general frame. the structure is apt to result in a large deflection even though this structure experiences a small displacement in absence. Usually, nonlinear analysis in numerical analysis means geometric nonlinearity and material nonlinearity and complex nonlinearity analysis considers both of them. In this study, nonlinear equation of equilibrium considering geometric nonlinearity as per finite element method was applied and also considered the material nonlinearity using the relation of stress-strain in element. It is applied to find unstable result for tracing load-deflection curve in the numerical analysis tech. especially Arc-length method, and result of the analysis was studied by ABAQUS a general purpose of the finite element program. It is found that the present analysis predicts accurate nonlinear behavior of plane and space truss.

  • PDF

A Study of the Tower Crane Hoisting Time Estimation Simulation Model with Climate Element for the High-Rise Building Construction (기후요소를 고려한 초고층 건설공사의 타워크레인 양중시간 예측 시뮬레이션 모델)

  • Yang, Kanghyeok;Lee, Hyun-Soo;Park, Moonseo;Jung, Minhyeok;Hwang, Sungjoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.2
    • /
    • pp.96-107
    • /
    • 2013
  • Tower crane hoisting plan is one of the key element for the success of entire High-Rise Building construction. Hoisting time is the basic factor to appropriate hoisting plan which need to the hoisting load estimate and tower crane selection. With this reason, accurate hoisting time is needed to the proper hoisting plan. The current hoisting time estimation for High-Rise Building focus on the hoisting cycle time estimation with historical data. However, this method underestimated the external influences like environmental factor. Thus, this paper aims to develop the hoisting time estimation model with discrete event simulation which include the wind influences with certain height. According to the simulation result, the hoisting time which applied wind influence is increasing with height growth. Because of the high speed wind, the upper area of building has more operation delay time than the mechanical operation time. Seoul, the research area, has the most fastest wind speed on April and the least on October. Due to these differences of wind speed, the hoisting time is estimated with significant differences between April and October. This hosting time estimation model would be used for estimating the influence of wind. Moreover, this could apply to make the realistic hoisting plan.

Thermal Stress Analysis of the Disposal Canister for Spent PWR Nuclear Fuels (가압경수로 고준위폐기물 처분용기의 열응력 해석)

  • 권영주;하준용;최종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.471-480
    • /
    • 2002
  • In this paper, the thermal stress analysis of spent nuclear fuel disposal canister in a deep repository at 500 m underground is carried out for the basic design of the canister. Since the nuclear fuel disposal usually emits much heat, a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences the thermal load due to the heat generation of spent nuclear fuels in the basket. Hence, in this paper the thermal stress analysis is executed using the finite element method. The finite clement code Eot the analysis Is not written directly, but a commercial code, NISA, is used because of the complexity of the structure and the large number of elements required for the analysis. The analysis result shows that even though the thermal stress is added to the stress generated by the hydrostatic underground water pressure and the swelling pressure of the bentonite buffer, the total stress is still smaller than the yield stress of the cast iron. Hence, the canister is still structurally safe when the thermal loads we included in the external loads applied on the canister.