• Title/Summary/Keyword: extensogram

Search Result 31, Processing Time 0.036 seconds

Rheological Properties of Korean Wheat Composite Flour and Dough with Nelumbo nucifera G. Tea Powder (백련차 분말을 대체한 우리밀 혼합분과 반죽의 특성)

  • Kim, Young-Sook;Jung, Seung-Tai;Kim, Mun-Yong;Chun, Soon-Sil
    • Korean journal of food and cookery science
    • /
    • v.24 no.6
    • /
    • pp.757-762
    • /
    • 2008
  • In this study, korean wheat composite flour and dough were prepared with 1.5, 3.0, 4.5, and 6% Nelumbo nucifera G. tea powder(NNTP). The samples and a control were then compared qualitatively in terms of moisture, protein, ash, and wet gluten content. The farinogram, amylogram, and extensogram characteristics of the dough were also examined, in order to determine the optimal ratio of NNTP for the formulation. According to our results, the moisture content of the flour decreased with increasing NSPP content, whereas its protein and ash content, resistance, and R/E ratio at 135 min of extensogram increased. The NNTP samples had a significantly higher water absorption and weakness of farinogram and maximum resistance at 45, 90, and 135 min. Additionally, samples had an R/E ratio at 45 min of extensogram, 90 min less than the control group. However, stability of the farinogram, temperature of maximum and maximum viscosity of the amylogram, and extensibility of the extensogram showed the reverse effect. The control and NNTP samples showed significant differences in gelatinization beginning temperature of the amylogram, while development time of the farinogram was not significantly different. With regard to the extensogram characteristics of the dough, the area of the control and 1.5% NNTP increased with increasing testing time, whereas at 3.0, 4.5 and 6.0% NNTP, extensibility, and resistance, maximum resistance, and R/E ratio of control and NNTP samples decreased. An area of 3.0, 4.5 and 6.0% NNTP and extensibility of 1.5% NNTP were not significantly different among the testing times. In conclusion, these results show that 1.5% NNTP may prove very useful as a substitute for korean wheat flour where the production of korean wheat white bread is concerned. It may also provide good nutritional and functional properties.

Effects of Azodicarbonamide on the Rheology of Wheat Flour Dough and the Quality Characteristics of Bread (Azodicarbonamide를 첨가한 밀가루 반죽의 물성 및 냉동저장 중 제빵 특성의 변화)

  • La, Im-Joung;Lee, Man-Chong;Park, Heui-Dong;Kim, Kwan-Pil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.9
    • /
    • pp.1566-1572
    • /
    • 2004
  • Effects of azodicarbonamide (ADA) were investigated on the rheological properties of flour dough by measuring farinogram, amylogram and extensogram based on the amount of ADA added. Quality characteristics of the bread made with the ADA added dough were also evaluated by measuring dough volume, moisture content, pH, proofed time, baking loss and textural characteristics. The farinogram showed that water absorption, stability and elasticity of the dough with ADA were higher than those without ADA. However, its absorption time and weakness decreased compared to the dough without ADA. Through the amylogram, it was found that gelatinization temperature and maximum viscosity increased, but temperature of maximum viscosity reduced in the dough with ADA. The extensogram showed that the area and resistance of the dough increased slightly but extensibility decreased drastically after fermentation, resulting in the ratio of resistance and extensibility (R/E) of the dough with ADA was lower than those without ADA. The bread prepared with the dough containing ADA after freezing up to 12 weeks showed higher pH and specific loaf volume but lower moisture content, second proof time and resistance than those without ADA.

Rheological Properties of Composite Flour and Dough with Concentrated Sweet Pumpkin Powder (농축단호박 분말을 대체한 혼합분과 반죽의 특성)

  • Lee, Chan-Ho;Kim, Mun-Yong;Chun, Soon-Sil
    • Korean journal of food and cookery science
    • /
    • v.24 no.4
    • /
    • pp.511-516
    • /
    • 2008
  • In this study, composite flour and dough were prepared with concentrated sweet pumpkin powder(CSPP) at varying concentrations of 3, 6, 9, 12, and 15%. The samples and a control were then compared with regards to quality characteristics, including moisture, protein, and ash contents, farinogram characteristics, amylogram characteristics, and falling number of flour and extensogram characteristics of dough, in an effort to determine the optimal ratio of CSPP in the formulation. As the CSPP content increased, the moisture and protein contents of the flour increased, whereas the ash contents decreased. With regard to the farinogram characteristics of flour, water absorption, development time, and stability decreased with increasing CSPP content, while weakness increased. The control group evidenced a significantly higher beginning temperature of gelatinization as compared to the CSPP samples. The temperature of maximum viscosity, maximum viscosity, and falling number of flour decreased with increasing CSPP content. With regard to the extensogram characteristics of dough, extensibility decreased with increasing testing time and CSPP content, whereas resistance, maximum resistance, and R/E ratio increased. In conclusion, these results show that $6{\sim}9%$ CSPP may prove very useful as a substitute for wheat flour in the production of hardroll bread, and may provide good nutritional and functional properties.

Rheological Properities of Bread Dough Made from Cordyceps militaris Powder (동충하초 분말 첨가한 빵 반죽의 물리적 특성)

  • Kim, Chang-Seob
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2010
  • This study was carried out to develop an optimum baking formula and baking process for a new bread raw material with added Cordyceps militaris powder, which has been known to prevent various adult diseases and cancers. The rheological properities of dough made from Cordyceps militaris powder-wheat flour with 0, 1, 2, and 3% Cordyceps militaris powder added-were investigated. A farinogram showed that the water absorption and weakness value of dough increased with added Cordyceps militaris powder, but development time and dough stability were decreased. An extensogram showed that resistance to extension was increased in bread with 1% Cordyceps militaris powder, but decreased in bread with 2% and, 3% powder. Extensibility decreased fermentation progressed. An amylogram showed that gelatinization point was increased but maximum viscosity was decreased with added Cordyceps militaris powder. With increased amounts of powder dough volume during fermentation was reduced. The change in pH values of dough after mixing, fermentation, and proofing decreased with increased amounts of added powder.

Effects of Attrition Milling in Wheat Flour on Starch Damaged of Dough and Bread Baking Properties (소맥분 제분시 발생되는 손상전분이 제빵 적성에 미치는 영향)

  • 주옥수;정용면
    • Food Science and Preservation
    • /
    • v.8 no.4
    • /
    • pp.434-441
    • /
    • 2001
  • The purpose of this research is the establishment of optimal processing and the quality improvement of confectionary analysis of the damaged starch content of flour. I studied the rheological and bread making properties of the dough containing different damaged starch content. I examined rheological and physico- chemical characteristic farinograph, extensograph and amylograph with DNS, CWRS and SW containing 6.5%, 8.2%, 9.0%, 9.0% and 10.5% of damaged starch. And I measured the hardness and specific volume and performed the functional survey by rheometer for quality control. In the amylogram, at the damaged starch content 9.5% at such the maximum viscosity was 900 B.U. the volume of bread fermention tolerance were increased. In addition, the extensegram after 135 min showed that maximum resistance of the dough were 570 B.U at the damaged starch contents of 9.5% and the bread had homogeneous air cells and internal structures at the damaged starch contents of 9.5% at which the area(A), resistance(R) and R/E value of the dough were highest.

  • PDF

The Effects of the Ash Content in Flour on the Rheological Properties of Frozen Dough (밀가루의 회분 함량이 냉동 생지 반죽의 물성에 미치는 영향)

  • Kim, Seok-Young;Han, Jae-Heung;Song, Young;Lee, Si-Kyung
    • Applied Biological Chemistry
    • /
    • v.46 no.1
    • /
    • pp.39-45
    • /
    • 2003
  • This study was conducted to investigate the effect of ash contents of bread flour on the rheology of frozen dough In making frozen dough by measuring amylograph, flrinograph and extensograph. The quality of frozen-stored dough under freezing condition ($-20^{\circ}C$, 12 weeks) was evaluated by measuring final proof time, moisture content, baking loss, loaf volume and hardness of bread with storage time. In bread flour with high ash content farinogram showed that water absorption, degree of softening increased but valorimeter value decreased. In bread flour with low ash content amylogram showed that gelatinization temperature and maximum viscosity increased and extensogram showed that the area and resistance of the bread flour increased. As the proof time increased the extensibility decreased. Final proof time of frozen dough was shortened at the bread flour with low ash content with storage time. In bread using the flour with high ash content, moisture content, increased but baking loss rate decreased while the hardness of product increased slowly with time. But in bread using the flour with low ash content, the loaf volume of baking increased but the hardness of product decreased. As the frozen storage time was shortened, the product was more stable and better in quality.

Rheological Properties of White Pan Bread Dough Prepared with Lotus (Nelumbo nucifera) Seeds Powder (연자육 분말을 첨가한 식빵 반죽의 물리적 특성)

  • Lee, Byung-Gu;Byun, Gwang-In
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.852-858
    • /
    • 2008
  • This study investigated the rheological properties of bread dough supplemented with lotus (Nelumbo nucifera) seed powder. The rheological properties measured were dough volume, farinogram, amylogram, extensogram, pH and outernal. The lotus seed powder contained 7.74% moisture, 20.15% crude protein, 2.11% crude fat, 4.34% crude ash, and 2.78% crude fiber. The farinogram showed that with increasing concentration of lotus seed powder the absorption rate of the dough increased slightly, the development time and stability decreased, and the degree of attenuation tended to be grown along. From the amylogram it was found that the gelatinization onset temperature and the maximum viscosity of the dough tended to increase with increasing content of lotus seed powder. The extensogram showed that the degree of extension of the dough decreased with increasing content of lotus seed powder, while the degree of resistance and resistance/extensibility increased. The dough pH tended to decrease with fermentation time, but increased with increasing content of lotus seed powder. A concentration of $5{\sim}10%$ lotus seed powder appears to be suitable for the preparation of dough.

The Effect of Addition of Potato Starch on the Frozen Dough (감자 전분의 첨가가 냉동 반죽에 미치는 영향)

  • 이명구;이종민;장준형;박정길
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.5
    • /
    • pp.403-410
    • /
    • 2000
  • This study was carried out to understand the effect of addition of potato search on the frozen dough. The characteristics of frozen dough were measured by the farinogram, the extensogram and the amylogram. The results of these measurements show that the dough added with starch has higher stability than the control. The physical and chemical change of the dough were measured in accordance with the period of the frozen storage. The dough added with starch showed smaller physical and chemical change than control, which means that the starch prevents the frozen dough from the deterioration during the frozen storage. It is supposed from this result that the starch protects the activity of yeast and the structure of gluten matrices from frozen damage. It is understood from this study that addition of potato starch into frozen dough improve the stability of the frozen dough.

  • PDF

Rheological Properties of the Wheat Flour Dough with Olive Oil (올리브유를 첨가한 빵 반죽의 리올로지 특성)

  • Lim, Sun-Heui;Kim, Seok-Young;Lee, No-Woon;Lee, Chi-Ho;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.749-753
    • /
    • 2004
  • Effects of olive oil on rheological properties of wheat flour dough were investigated through farinograph, amylograph, and extensograph, and by measuring wheat flour dough fermentation volume. Farinogram showed development time, stability, elasticity, and valorimeter value of olive oil-added wheat flour decreased, whereas water absorption and stability were similar to control (shortening 4%). Gelatinization temperature and maximum viscosity of wheat flour dough with olive oil decreased more than those of control as revealed by amylogram. Extensogram showed wheat flour area increased, whereas dough volume decreased in olive oil-added wheat flour dough.

Effects of Branched Dextrin on the Quality Characteristics of Frozen Soft Roll Dough and its Bread during Storage (분지 덱스트린 첨가가 냉동 소프트롤 반죽 및 빵의 저장 중 품질 특성에 미치는 영향)

  • Park, Jin-Hee;Lim, Chun-Son;Kim, Il-Hwan;Kim, Mun-Yong
    • Korean journal of food and cookery science
    • /
    • v.27 no.5
    • /
    • pp.507-522
    • /
    • 2011
  • In this study, samples of wheat flour and dough were prepared by adding of 1, 3, or 5% branched dextrin, which is produced from the amylopectin of waxy corn starch using a cyclization reaction with a branching enzyme. The samples were then evaluated qualitatively in terms of farinogram, viscogram, and extensogram characteristics. The fermentation power of dough expansion, extensogram characteristics, specific volume, baking loss, external/internal surface appearance, and sensory qualities were also examined after 4 weeks of storage at -20$^{\circ}C$ to determine the effect on freeze-thaw stability and quality improvement of branched dextrins in the soft roll bread formulation. Furthermore, the samples along with a control were compared regarding their quality characteristics, including changes in moisture content, water activity, color, and textural characteristics during a storage period of 4 days at 20$^{\circ}C$ to determine the effect on preventing retrogradation of the branched dextrin. As the branched dextrin content increased, area and extensibility increased, whereas water absorption, fermentation power of dough expansion, resistance/extensibility ratio, baking loss, and brownness of the crust decreased. However, the control group presented significantly higher peak viscosity, resistance, specific volume, taste, overall acceptability, moisture content, water activity, springiness, cohesiveness, and resilience values than those of the branched dextrin samples, whereas lightness, hardness, and chewiness showed the reverse effect. As the storage period increased, lightness, hardness, and chewiness increased, whereas cohesiveness decreased. In conclusion, the results indicate that adding 1~3% branched dextrin into a soft roll bread formulation from frozen dough had no positive effect on freeze-thaw stability or preventing retrogradation but may provide good nutritional properties.