• Title/Summary/Keyword: extended finite element

Search Result 421, Processing Time 0.024 seconds

A Study on the Energy Release Rate of Delaminated Composite Laminates (층간분리된 복합적층판의 에너지 방출률에 관한 연구)

  • Cheong, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.97-107
    • /
    • 1995
  • Global postbuckling analysis is accomplished for one-dimensional and two-dimensional delaminations. A new finite element model, which can be used to model the global postbuckling analysis of one-dimensional and two-dimensional delaminations, is presented. In order to calculate the strain energy release rate, geometrically nonlinear analysis is accomplished, and the incremental crack closure technique is introduced. To check the effectiveness of the finite element models and the incremental crack closure technique, the simplified closed-form sloution for a through-the-width delamination with plane strain condition is derived and compared with the finite element result. The finite element results show good agreement with the closed-foul1 solutions. The present method was extended to calculate the strain energy release rate for two-dimensional delamination. For a symmetric circular delamination, the strain energy release rate shows great variation along the delamination front. and the delamination growth appears to occur perpendicular to the loading direction.

  • PDF

Analysis of Arbitrarily Shaped Three Dimensional Cracks in an Infinite Body Using the FEAM (유한요소 교호법을 이용한 무한 물체에 존재하는 임의 형상의 삼차원 균열 해석)

  • Kim, Tae-Soon;Park, Jai-Hak;Park, Chi-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.278-283
    • /
    • 2004
  • Many analysis methods, including finite element method, have been suggested and used for assessing the integrity of cracked structures. In the paper, in order to analyze arbitrarily shaped three dimensional cracks in an infinite body, the finite element alternating method is extended. The cracks are modeled as a distribution of displacement discontinuities by the displacement discontinuity method and the symmetric Galerkin boundary element method. Applied the proposed method to several example problems for planner cracks in finite bodies, the accuracy and efficiency of the method were demonstrated.

  • PDF

Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load

  • Benzaama, A.;Mokhtari, M.;Benzaama, H.;Gouasmi, S.;Tamine, T.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.129-139
    • /
    • 2018
  • The composite materials are widely used in aircraft structures. Their relative rigidity/weight gives them an important advantage over the metal structures. The objective of this work is to analyze by the finite element method the mechanical behavior of composite plate type notched with various forms under tensile load. Two basic parameters were taken into consideration. The first, the form of the notch in order to see its effect on the stress and the failure load. The second, we studied the influence of the locale orientation of fiber around the plate's notch. These parameters are studied in order to see their effects on the distribution stress and failure load of the plate. The calculation of the failure load is determined numerically with the numerical code ABAQUS using the XFEM (extended Finite Element Modeling) based on the fracture mechanics. The result shows clearly that it is important to optimize the effect of fiber orientation around the notch.

Dismountable steel tensegrity grids as alternate roof structures

  • Panigrahi, Ramakanta;Gupta, Ashok;Bhalla, Suresh
    • Steel and Composite Structures
    • /
    • v.9 no.3
    • /
    • pp.239-253
    • /
    • 2009
  • This paper reviews the concept of tensegrity structures and proposes a new type of dismountable steel tensegrity grids for possible deployment as light-weight roof structures. It covers the fabrication of the prototype structures followed by their instrumentation, destructive testing and numerical analysis. First, a single module, measuring $1m{\times}1m$ in size, is fabricated based on half-cuboctahedron configuration using galvanised iron (GI) pipes as struts and high tensile stranded cables as tensile elements. Detailed instrumentation of the structure is carried out right at the fabrication stage. The structure is thereafter subjected to destructive test during which the strain and the displacement responses are carefully monitored. The structure is modelled and analyzed using finite element method (FEM) and the model generated is updated with the experimental results. The investigations are then extended to a $2{\times}2$ grid, measuring $2m{\times}2m$ in size, fabricated uniquely by the cohesive integration of four single tensegrity modules. After updating and validating on the $2{\times}2$ grid, the finite element model is extended to a $8{\times}8$ grid (consisting of 64 units and measuring $8m{\times}8m$) whose behaviour is studied in detail for various load combinations expected to act on the structure. The results demonstrate that the proposed tensegrity grid structures are not only dismountable but also exhibit satisfactory behaviour from strength and serviceability point of view.

Effect of force during stumbling of the femur fracture with a different ce-mented total hip prosthesis

  • El Sallah, Zagane Mohammed;Ali, Benouis;Abderahmen, Sahli
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.5 no.1
    • /
    • pp.11-23
    • /
    • 2020
  • Total hip prosthesis is used for the patients who have hip fracture and are unable to recover naturally. To de-sign highly durable prostheses one has to take into account the natural processes occurring in the bone. Finite element analysis is a computer based numerical analysis method which can be used to calculate the response of a model to a set of well-defined boundary conditions. In this paper, the static load analysis is based, by se-lecting the peak load during the stumbling activity. Two different implant materials have been selected to study appropriate material. The results showed the difference of maximum von Misses stress and detected the frac-ture of the femur shaft for different model (Charnley and Osteal) implant with the extended finite element method (XFEM), and after the results of the numerical simulation of XFEM for different was used in deter-mining the stress intensity factors (SIF) to identify the crack behavior implant materials for different crack length. It has been shown that the maximum stress intensity factors were observed in the model of Charnley.

Cyclic behavior of extended end-plate connections with European steel shapes

  • Akgonen, Aliriza I.;Yorgun, Cavidan;Vatansever, Cuneyt
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1185-1201
    • /
    • 2015
  • The aim of this experimental research is to investigate the conformity of the four-bolt unstiffened moment end-plate connections consisting of European steel sections which do not meet the limitations specified for beam flange width and overall beam depth in ANSI/AISC 358-10 to the requirements of seismic application. However, the connections are satisfactory with the limitations required by Turkish Earthquake Code. For this purpose, four test specimens were designed and cyclic load was applied to three specimens while one was tested under monotonic loading to provide data for the calibration of the analytical models. The moment-rotation hysteresis loops and the failure modes for all test specimens are presented. A full three-dimensional finite element model is also developed for each test specimen for use to predict their behavior and to provide a tool for generating subsequent extensive parametric studies. The test results show that all specimens performed well in terms of rotation capacity and strength. Finite element models are found to be capable of approximating the cyclic behavior of the extended end-plate connection specimens.

Numerical analysis of concrete degradation due to chloride-induced steel corrosion

  • Ayinde, Olawale O.;Zuo, Xiao-Bao;Yin, Guang-Ji
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.203-210
    • /
    • 2019
  • Concrete structures in marine environment are susceptible to chloride attack, where chloride diffusion results in the corrosion of steel bar and further lead to the cracking of concrete cover. This process causes structural deterioration and affects the response of concrete structures to different forms of loading. This paper presents the use of ABAQUS Finite Element Software in simulating the processes involved in concrete's structural degradation from chloride diffusion to steel corrosion and concrete cover cracking. Fick's law was used for the chloride diffusion, while the mass loss from steel corrosion was obtained using Faraday's law. Pressure generated by steel corrosion product at the concrete-steel interface was modeled by applying uniform radial displacements, while concrete smeared cracking alongside the Extended Finite Element Method (XFEM) was used for concrete cover cracking simulation. Results show that, chloride concentration decreases with penetration depth, but increases with exposure time at the concrete-steel interface. Cracks initiate and propagate in the concrete cover as pressure caused by the steel corrosion product increases. Furthermore, the crack width increases with the exposure time on the surface of the concrete.

Simulation of Multi-Cracking in a Reinforced Concrete Beam by Extended Finite Element Method (확장유한요소법을 이용한 철근 콘크리트 보의 다중균열 해석)

  • Yoo, Hyun-Suk;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2016
  • Recently, extensive research on crack analysis using extended finite element method(XFEM) which has main advantages in element re-meshing and visualization of cracks has been conducted. However, its application was restricted to the members of a single material. In this study, the applicability and feasibility of the XFEM to the multiple crack analysis of reinforced concrete beams were demonstrated. ABAQUS which has implemented XFEM was used for the crack analysis and its results were compared with test results. Enriched degree-of-freedom locking phenomenon was discovered and its causes and the ways to prevent it were suggested. The locking occurs when cracks in the adjacent elements simultaneously develop. A modelling technique for multiple cracking similar to test results was also proposed. The analysis with XFEM showed similar results to the tests in terms of crack patterns, spacing of cracks, and load-deflection relationship.

Finite Element Analysis of Laser-Generated Ultrasound for Characterizing Surface-Breaking Cracks

  • Jeong Hyun Jo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1116-1122
    • /
    • 2005
  • A finite element method was used to simulate the wave propagation of laser-generated ultrasound and its interaction with surface breaking cracks in an elastic material. Thermoelastic laser line source on the material surface was approximated as a shear dipole and loaded as nodal forces in the plane-strain finite element (FE) model. The shear dipole- FE model was tested for the generation of ultrasound on the surface with no defect. The model was found to generate the Rayleigh surface wave. The model was then extended to examine the interaction of laser generated ultrasound with surface-breaking cracks of various depths. The crack-scattered waves were monitored to size the crack depth. The proposed model clearly reproduced the experimentally observed features that can be used to characterize the presence of surface-breaking cracks.

Transient linear elastodynamic analysis in time domain based on the integro-differential equations

  • Sim, Woo-Jin;Lee, Sung-Hee
    • Structural Engineering and Mechanics
    • /
    • v.14 no.1
    • /
    • pp.71-84
    • /
    • 2002
  • A finite element formulation for the time-domain analysis of linear transient elastodynamic problems is presented based on the weak form obtained by applying the Galerkin's method to the integro-differential equations which contain the initial conditions implicitly and does not include the inertia terms. The weak form is extended temporally under the assumptions of the constant and linear time variations of field variables, since the time-stepping algorithms such as the Newmark method and the Wilson ${\theta}$-method are not necessary, obtaining two kinds of implicit finite element equations which are tested for numerical accuracy and convergency. Three classical examples having finite and infinite domains are solved and numerical results are compared with the other analytical and numerical solutions to show the versatility and accuracy of the presented formulation.