• Title/Summary/Keyword: extended finite element

Search Result 421, Processing Time 0.026 seconds

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.

An Extended Meshfree Method without the Blending Region (혼합영역이 없는 확장무요소법)

  • Zi, Goang-Seup;Rabczuk, Timon;Kim, Ji-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.507-512
    • /
    • 2007
  • A new type of extended element-free Galerkin method (XFEM) is proposed on this paper. The blending region which was inevitable in the extended finite element method and the extended meshfree method is removed in this method. For this end, two different techniques are developed. The first one is the modification of the domain of influence so that the crack tip is always placed on the edge of a domain of influence. The second method is the use of the Lagrange multiplier. The crack is virtually extended beyond the actual crack tip. The virtual extension was forced close by the Lagrange multiplier. The first method can be applied to two dimensional problems only Lagrange multiplier method can be used in both two and three dimensions.

  • PDF

The 3D Surface Crack-Front Constraints in Welded Joins (용접부 3차원 표면균열선단에서의 구속상태)

  • Lee, Hyeong-Il;Seo, Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.144-155
    • /
    • 2000
  • 초록 The validity, of a single parameter such as stress intensity, factor K or J-integral in traditional fracture mechanics depends strongly on the geometry, and loading condition. Therefore the second parameter like T-stress measuring the stress constraint is additionally needed to characterize the general crack-tip fields. While many, research works have been done to verify, the J-T description of elastic-plastic crack-tip stress fields in plane strain specimens, limited works (especially. for bimaterials) have been performed to describe the structural surface crack-front stress fields with the two parameters. On this background, via detailed three dimensional finite element analyses for surface-cracked plates and straight pipes of homogeneous materials and bimaterials under various loadings, we investigate the extended validity or limitation of the two parameter approach. We here first develop a full 3D mesh generating program for semi-elliptical surface cracks, and calculate elastic T-stress from the obtained finite element stress field. Comparing the J-T predictions to the elastic-plastic stresses from 3D finite element analyses. we then confirm the extended validity of fracture mechanics methodology based on the J-T two parameters in characterizing the surface crack-front fields of welded plates and pipes under various loadings.

Vibro-acoustic Analysis of Adjoined Two Rooms Using 3-D Power Flow Finite Element Method (3차원 파워흐름유한요소법을 이용한 인접한 두 실내에서의 진동음향 해석)

  • Kim, Sung-Hee;Hong, Suk-Yoon;Kil, Hyun-Gwon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.74-82
    • /
    • 2010
  • Power flow analysis(PFA) methods have shown many advantages in noise predictions and vibration analysis in medium-to-high frequency ranges. Applying the finite element technique to PFA has produced power flow finite element method(PFFEM) that can be effectively used for analysis of vibration of complicated structures. PFADS(power flow analysis design system) based on PFFEM as the vibration analysis program has been developed for vibration predictions and analysis of coupled structural systems. In this paper, to improve the function of vibro-acoustic coupled analysis in PFADS, the PFFEM has been extended for analysis of the interior noise problems in the vibro-acoustic fully coupled systems. The vibro-acoustic fully coupled PFFEM formulation based on energy coupled relations is extended to structural system model by using appropriate modifications to structural-structural, structural-acoustic and acoustic-acoustic joint matrices. It has been applied to prediction of the interior noise in two room model coupled with panels, and the PFFEM results are compared to those of statistical energy analysis(SEA).

Hybrid finite element model for wave transformation analysis (파랑 변형 해석을 위한 복합 유한요소 모형)

  • Jung Tae Hwa;Park Woo Sun;Suh Kyung Duck
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.209-212
    • /
    • 2002
  • Since Berkhoff proposed the mild-slope equation in 1972, it has widely been used for calculation of shallow water wave transformation. Recently, it was extended to give an extended mild-slope equation, which includes the bottom slope squared term and bottom curvature term so as to be capable of modeling wave transformation on rapidly varying topography. These equations were derived by integrating the Laplace equation vertically. In the present study, we develop a finite element model to solve the Laplace equation directly while keeping the same computational efficiency as the mild-slope equation. This model assumes the vertical variation of wave potential as a cosine hyperbolic function as done in the derivation of the mild-slope equation, and the Galerkin method is used to discretize . The computational domain was discretized with proper finite elements, while the radiation condition at infinity was treated by introducing the concept of an infinite element. The upper boundary condition can be either free surface or a solid structure. The applicability of the developed model was verified through example analyses of two-dimensional wave reflection and transmission. .

  • PDF

A Study on 3D Smoothed Finite Element Method for the Analysis of Nonlinear Nearly-incompressible Materials (비선형 비압축성 물질의 해석을 위한 3차원 Smoothed FEM)

  • Lee, Changkye;Yee, Jurng-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.159-169
    • /
    • 2019
  • This work presents the three-dimensional extended strain smoothing approach in the framework of finite element method, so-called smoothed finite element method (S-FEM) for quasi-incompressible hyperelastic materials undergoing the large deformations. The proposed method is known that the incompressible limits, such as over-estimation of stiffness and distorted mesh sensitivity, can be overcome in two dimensions. Therefore, in this paper, the idea of Cell-based, Edge-based and Node-based strain smoothing approaches is extended to three-dimensions. The construction of subcells and smoothing domains for each methods are explained. The smoothed strain-displacement matrix and the stiffness matrix are obtained on each smoothing domain in the same manner with two-dimensional S-FEM. Various numerical tests are studied to demonstrate the validity and accuracy of 3D-S-FEM. The obtained results are compared with analytical solutions to express the efficacy of the methods.

EVALUATION OF PRIMARY WATER STRESS CORROSION CRACKING GROWTH RATES BY USING THE EXTENDED FINITE ELEMENT METHOD

  • LEE, SUNG-JUN;CHANG, YOON-SUK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.895-906
    • /
    • 2015
  • Background: Mitigation of primary water stress corrosion cracking (PWSCC) is a significant issue in the nuclear industry. Advanced nickel-based alloys with lower susceptibility have been adopted, although they do not seem to be entirely immune from PWSCC during normal operation. With regard to structural integrity assessments of the relevant components, an accurate evaluation of crack growth rate (CGR) is important. Methods: For the present study, the extended finite element method was adopted from among diverse meshless methods because of its advantages in arbitrary crack analysis. A user-subroutine based on the strain rate damage model was developed and incorporated into the crack growth evaluation. Results: The proposed method was verified by using the well-known Alloy 600 material with a reference CGR curve. The analyzed CGR curve of the alternative Alloy 690 material was then newly estimated by applying the proven method over a practical range of stress intensity factors. Conclusion: Reliable CGR curves were obtained without complex environmental facilities or a high degree of experimental effort. The proposed method may be used to assess the PWSCC resistance of nuclear components subjected to high residual stresses such as those resulting from dissimilar metal welding parts.

Incremental extended finite element method for thermal cracking of mass concrete at early ages

  • Zhu, Zhenyang;Zhang, Guoxin;Liu, Yi;Wang, Zhenhong
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.33-42
    • /
    • 2019
  • Thermal cracks are cracks that commonly form at early ages in mass concrete. During the concrete pouring process, the elastic modulus changes continuously. This requires the time domain to be divided into several steps in order to solve for the temperature, stress, and displacement of the concrete. Numerical simulations of thermal crack propagation in concrete are more difficult at early ages. To solve this problem, this study divides crack propagation in concrete at early ages into two cases: the case in which cracks do not propagate but the elastic modulus of the concrete changes and the case in which cracks propagate at a certain time. This paper provides computational models for these two cases by integrating the characteristics of the extended finite element algorithm, compiles the corresponding computational programs, and verifies the accuracy of the proposed model using numerical comparisons. The model presented in this paper has the advantages of high computational accuracy and stable results in resolving thermal cracking and its propagation in concrete at early ages.

Finite Element Crash Analysis of Support Structures Made of Various Composite Materials (다양한 복합소재를 적용한 지주구조의 유한요소 충돌 해석)

  • Kim, Gyu-Dong;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 2015
  • This study performed a finite element crash analysis of support structures made of various composite materials for road facilities. The effects of different material properties of composites for various parameters are studied using the finite element commercial package for this study. In this study, the existing finite element analysis of composite post structures using the LS-DYNA program is further extended to compare dynamic behaviors against car crash of the structures made of various composite materials. The several numerical examples show the comparison of the nonlinear dynamic effects for different materials.

A Development of Finite Element Model on Jet Loom Structures for the Improvement of Dynamic Characteristics (동특성 개선을 위한 제트직기 구조물의 유한요소모델 개발)

  • 전두환;권상석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.824-829
    • /
    • 2002
  • Since many reciprocating and rotating components are attached to jet loom structure. it is exposed to a more vibration and moise problems than the other textile machinery. Thus the design of the jet loom frame is very important to characterize the dynamic response. In this study, a finite element model of jet loom main frame was developed to investigate the dynamic characteristics of jet loom. Two different finite element models of different main frames were constructed and these models were validated by the experimental results. Dynamic characteristics such natural frequencies and mode shapes were in good agreement between the finite element analysis and experimental results within 10% error range. It is expected that the result from this study can be used as the basic information of jet loom dynamic analysis and be extended for further analysis of forced response case.

  • PDF