• Title/Summary/Keyword: exposed region

Search Result 375, Processing Time 0.022 seconds

Milk Protein Production and Plasma 3-Methylhistidine Concentration in Lactating Holstein Cows Exposed to High Ambient Temperatures

  • Kamiya, Mitsuru;Kamiya, Yuko;Tanaka, Masahito;Shioya, Shigeru
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.8
    • /
    • pp.1159-1163
    • /
    • 2006
  • This experiment was performed to examine the influences of high ambient temperature on milk production, nutrient digestibility, energy and protein sufficiency ratio, and plasma metabolites concentration in lactating cows. In a $2{\times}2$ crossover design, four multiparous lactating Holstein cows were maintained in a chamber under treatment of constant moderate ($18^{\circ}C$) ambient temperature (MT) or high ($28^{\circ}C$) ambient temperatures (HT). The DMI and milk protein yield were significantly lower in HT (p<0.05). The milk yield, milk lactose yield, and milk SNF yield tended to be lower in HT (p<0.10). No statistical differences for 4% fat-corrected milk and milk fat yield were observed. Rectal temperatures were significantly higher in HT than MT (p<0.05). The apparent DM, OM, ether extract, CF, and ash digestibility did not differ between treatments. On the other hand, the apparent CP digestibility was increased significantly (p<0.05) and nitrogen free extract tended to increase (p<0.10) in HT. The sufficiency ratio of ME and DCP intake for each requirement tended to be lower in HT than in MT (p<0.10). Concentrations of total protein (TP), albumin, and urea nitrogen in plasma did not differ between treatments. Plasma 3-methylhistidine (3MH) concentration as a marker of myofibrillar protein degradation tended to be higher in HT (p<0.15). In conclusion, high ambient temperature was associated with a lower energy and protein sufficiency ratio, and decreased milk protein production, even though the body protein mobilization tended to be higher.

The Changes of Sea Level and Climate during the Late Pleistocene and Holocene in the Yellow Sea Region (한국 황해(서해)의 프라이스토세 후기 및 홀로세(현세)의 해수면 변동과 기후)

  • 박용안
    • The Korean Journal of Quaternary Research
    • /
    • v.6 no.1
    • /
    • pp.13-19
    • /
    • 1992
  • To understand the natural environments and human cultures in the Yellow Sea regions, this paper deals especially the climate and sea level fluctuation in the Yellow Sea and its surrounding region in the period of late Pleistocene (125, 000 yr BP) to Holocene. During the glacial maximum (about 15, 000 yr BP to 18, 000 yr BP), the climate might be cold and arid. These arid climate in the Yellow Sea region did make desertization possible. Possible human culture exchanges between China, Korea and Japan might be carried in a easy way, because the entire basin of the Yellow Sea was exposed as land. Paleoshorelines of the Yellow Sea in the period of 10, 000 yr BP, 9, 000 ry BP and 6, 000 yr BP are presented and sea level fluctuation curve from 37, 000 yr BP (late Pleistocene) to present (late Holocene), for the first time, is presented based on a careful reconsideration of existing old data and recent new data.

  • PDF

Geometric Region Reconstruction of Steel-tube Computed Radiography Using Nonlinear Structural Analysis (비선형 구도해석에 의한 강관 CR영상의 기하학적 영역복원)

  • Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.146-152
    • /
    • 2009
  • The steel-tube is exposed to a radiation from X-ray source. The transmitted radiation is detected by a detector, usually film or more recently an imaging plate(IP) of Computed Radiography(CR). The detected radiation overlaps the region of both sides of the object. The radiographic images reflect the projections of the rays, passing twice through both external and internal tube material. Nonlinear distortion due to the radioactive transmission and geometric disposition also appears on images. In this paper, an analytical approach is presented to achieve image reconstruction from the steel-tube CR images. Parameters related to radiation and measuring structure, such as intensities, absorption in material and geometric specifications linked with the collimating components, are calculated and identified in order to construct the renoval images for twofold regions of circle-type steel tubes. A correction procedure for region recovery most similar to the true tube is designed. The application of this approach on CR images is shown and reconstructed results are discussed.

Binding Modes of New Bis-Ru(II) Complexes to DNA: Effect of the Length of the Linker

  • Kwon, Byung-Hyang;Choi, Byung-Hoon;Lee, Hyun-Mee;Jang, Yoon-Jung;Lee, Jae-Cheol;Kim, Seog-K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1615-1620
    • /
    • 2010
  • Bis-[dipyrido[3,2-$\alpha$:2',3'-c]phenazine)$_2$(1,10-phenanthroline)$_2Ru_2$]$^{2+}$ complexes (bis-Ru(II) complexes) tethered by linkers of various lengths were synthesized and their binding properties to DNA investigated by normal absorption and linear dichroism spectra, and fluorescence techniques in this study. Upon binding to DNA, the bis-Ru(II) complex with the longest linker (1,3-bis-(4-pyridyl)-propane), exhibited a negative $LD^r$ signal whose intensity was as large as that in the DNA absorption region, followed by a complicate $LD^r$ signal in the metal-to-ligand charge transfer region. The luminescence intensity of this bis-Ru(II) complex was enhanced. The observed $LD^r$ and luminescence results resembled that of the [Ru(1,10-phenanthroline)$_2$ dipyrido[3,2-$\alpha$:2',3'-c]phenazine]$^{2+}$ complex, whose dipyrido[3,2-$\alpha$:2',3'-c]phenazine (dppz) ligand has been known to intercalate between DNA bases. Hence, it is conclusive that both dppz ligands of the bis-Ru(II) complex intercalate. The binding stoichiometry, however, was a single intercalated dppz per ~ 2.3 bases, which violates the "nearest binding site exclusion" model for intercalation. The length between the two Ru(II) complexes may be barely long enough to accommodate one DNA base between the two dppz ligands, but not for two DNA bases. When the linker was shorter (4,4'-bipyridine or 1,2-bis-(4-pyridyl)-ethane), the magnitude of the LD in the dppz absorption region, as well as the luminescence intensity of both bis-Ru(II) complexes, was half that of the bis-Ru(II) complex bearing a long linker. This observation can be elucidated by a model whereby one of the dppz ligands intercalates while the other is exposed to the aqueous environment.

Recent Observations of Micro-earthquakes and Its Implications for Seismic Risk in the Seoul Metropolitan Region, Korea (최근 관측된 수도권 지역 미소지진과 지진위험성)

  • Kim, Kwang-Hee;Han, Minhui;Kim, Myeongsu;Kyung, Jai-Bok
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.253-260
    • /
    • 2016
  • A moment magnitude 3.1 earthquake occurred in the Seoul metropolitan region (SMR), Korea, on 9 February 2010. The unexpected shaking attracted much attention and raised concerns about the seismic hazards and risks in the SMR, which was regarded as an area safe from any earthquake hazard. The SMR has a population of 25 million and is one of the largest metropolitan areas in the world. A shakemap for a scenario earthquake with magnitude 6.5 and focal depth 12 km implies that the SMR will be exposed to serious risk because of its large population and the high vulnerability of its buildings. Although the instrumentally recorded earthquakes discussed in this article cannot be classified as major events, they should not be discounted as insignificant. Considering the low seismicity, micro-earthquakes below the magnitude of a conventional seismic network can achieve would be used to estimate background information in the evaluation of earthquake hazards and risks.

Effects of post weld heat treatment conditions on localized corrosion resistance of super duplex stainless steel tube used for thermal power plant applications (화력발전용 슈퍼 듀플렉스 스테인리스 강 조관재의 용접 후 열처리 조건이 국부부식 저항성에 미치는 영향)

  • Lee, Jun Ho;Park, Jin sung;Cho, Dong Min;Hong, Seung Gab;Kim, Sung Jin
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.248-259
    • /
    • 2021
  • This study examined the influence of post weld heat treatment (PWHT) conditions on corrosion behaviors of laser-welded super duplex stainless steel tube. Due to the high cooling rate of laser welding, the phase fraction of ferrite and austenite in the weld metal became unbalanced significantly. In addition, the Cr2N particles were precipitated adjacent to the fusion line, which can be susceptible to the localized corrosion. On the other hand, the phase fraction in the weld metal was restored at a ratio of 5:5 when exposed to temperatures above 1060 ℃ during the post weld heat treatment. Nevertheless, the high beltline speed during the PWHT, leading to the insufficient cooling rate, caused a precipitation of σ phase at the interface between ferrite/austenite in both weld metal and base metal. This resulted in the severe corrosion damages and significant decrease in critical pitting temperature (CPT), which was even lower than that measured in as-welded condition. Moreover, the fraction of σ phase in the center region of post weld heat treated steel tube was obtained to be higher than in the surface region. These results suggest that the PWHT conditions for the steel tube should be optimized to ensure the high corrosion resistance by excluding the precipitation of σ phase even in center region.

Visualization of Self-Healing Function of Protective Coating for Concrete (콘크리트 보호코팅재의 자기치유 기능의 시각화)

  • Kim, Dong-Min;Choi, Ju-Young;Jin, Seung-Won;Nam, Kyeong-Nam;Park, Hyeong-Joo;Chung, Chan-Moon
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.10
    • /
    • pp.87-93
    • /
    • 2019
  • Microcapsules were prepared by using a mixture of linseed oil and a small amount of fluorescent fluid as a core material. Self-healing protective coatings were prepared by applying coating formulations containing varying amounts of microcapsules on mortar surface. After scratch or crack was generated in the coating, when the damaged region was exposed to ultraviolet light (${\lambda}=365nm$), it was observed that fluorescence emission area increased with increasing microcapsule loading. In the cases of the self-healing coatings having 20wt% or more microcapsule loading, the damaged region was almost filled with the healing agent. In water sorptivity test, the self-healing coating having 20wt% or more microcapsule loading showed a healing efficiency of about 85%. The fluorescence emission from the damaged region was easily observed at a distance of 3 m. The self-healing protective coating is expected to be useful to confirm its self-healing function with the eye.

Three-dimensional finite element analysis of forging processes with back pressure exerted by spring force (스프링 힘에 의한 배합부가 단조 공정의 3차원 유한요소해석)

  • Jang, S.M.;Kim, M.C.;Lee, M.C.;Jun, B.Y.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.470-473
    • /
    • 2009
  • In this paper, back pressure forging processes of which back pressures are exerted by mechanical forces including spring reaction are simulated by three-dimensional finite element method. The basic three-dimensional approach extended from two-dimensional approach is accounted for. An axisymmetric backward and forward extrusion process having a back pressing die, which is exposed to oscillation of forming load due to variation of reduction ratios with stroke and its related frequent variation of major deforming region, is simulated by both two and three dimensional approaches to justify the presented approach by their comparison. A three-dimensional forging process having a back pressing die attached to the punch by a mechanical spring is simulated and the results are investigated to reveal accuracy of the presented approach.

  • PDF

Evaluation of Corrosion Protection for Epoxy and Urethane Coating by EIS under Various Cyclic Corrosion Tests

  • Hyun, Jonghun;Shon, Minyoung
    • Corrosion Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.95-100
    • /
    • 2011
  • Protective coatings play an important role in the protection of metallic structures against corrosive environment. The main function of anticorrosive coating is to prevent the materials from corrosive agents, such as water, oxygen and ions. In the study, the corrosion protection properties of urethane and epoxy coating systems were evaluated using EIS methods exposed to the corrosion acceleration test such as Norsok M501, Prohesion and hygrothermal cyclic test. AFM analysis of the coating systems was carried out to monitor the change of roughness of coatings. Urethane coating system was more stable than the epoxy coating under given cyclic conditions. Water uptake into the urethane coatings was less than that into the epoxy coating. The urethane coating system showed better corrosion protection than epoxy coating system based on the changes of the impedance modulus at low frequency region with exposure time. Consequently, the corrosion protection properties of the epoxy and urethane coatings was well correspond with their surface roughness changes and water uptakes.

An Experimental Study on the Evaporation and Ignition of CWS Droplets (CWS액적의 증발 및 점화에 관한 실험적 연구)

  • 안국영;백승욱;김관태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1246-1252
    • /
    • 1993
  • Coal-Water slurry (CWS) is a new potential form of fuel for use in power plants and industrial furnaces. The evaporation and ignition characteristics of CWS have been studied in the post-flame region generated by a flat flame burner. Individual droplets with initial diameters of 1-3mm were supported around the thermocouples and raidly exposed to a hot gas stream. The gas temperature ranged between $950^{\circ}C$ and 1600.deg. C at atmospheric pressure. The effect of droplet size, gas temperature and radiative heat transfer by screen were studied experimentally. The ignition criterion was either a rapid temperature rise in time-temperatuire curves or onset of visible flame in experiment. Incresing the gas temperature or decreasing the droplet size reduced the time required for evaporation and ignition.