• Title/Summary/Keyword: exponential protocol

Search Result 68, Processing Time 0.041 seconds

Gallop-Vegas: An Enhanced Slow-Start Mechanism for TCP Vegas

  • Ho Cheng-Yuan;Chan Yi-Cheng;Chen Yaw-Chung
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.351-359
    • /
    • 2006
  • In this article, we present a new slow-start variant, which improves the throughput of transmission control protocol (TCP) Vegas. We call this new mechanism Gallop-Vegas because it quickly ramps up to the available bandwidth and reduces the burstiness during the slow-start phase. TCP is known to send bursts of packets during its slow-start phase due to the fast window increase and the ACK-clock based transmission. This phenomenon causes TCP Vegas to change from slow-start phase to congestion-avoidance phase too early in the large bandwidth-delay product (BDP) links. Therefore, in Gallop-Vegas, we increase the congestion window size with a rate between exponential growth and linear growth during slow-start phase. Our analysis, simulation results, and measurements on the Internet show that Gallop-Vegas significantly improves the performance of a connection, especially during the slow-start phase. Furthermore, it is implementation feasible because only sending part needs to be modified.

A Study on Distributed Message Allocation Method of CAN System with Dual Communication Channels (중복 통신 채널을 가진 CAN 시스템에서 분산 메시지 할당 방법에 관한 연구)

  • Kim, Man-Ho;Lee, Jong-Gap;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.1018-1023
    • /
    • 2010
  • The CAN (Controller Area Network) system is the most dominant protocol for in-vehicle networking system because it provides bounded transmission delay among ECUs (Electronic Control Units) at data rates between 125Kbps and 1Mbps. And, many automotive companies have chosen the CAN protocol for their in-vehicle networking system such as chassis network system because of its excellent communication characteristics. However, the increasing number of ECUs and the need for more intelligent functions such as ADASs (Advanced Driver Assistance Systems) or IVISs (In-Vehicle Information Systems) require a network with more network capacity and the real-time QoS (Quality-of-Service). As one approach to enhancing the network capacity of a CAN system, this paper introduces a CAN system with dual communication channel. And, this paper presents a distributed message allocation method that allocates messages to the more appropriate channel using forecast traffic of each channel. Finally, an experimental testbed using commercial off-the-shelf microcontrollers with two CAN protocol controllers was used to demonstrate the feasibility of the CAN system with dual communication channel using the distributed message allocation method.

A Study on CSMA/CA for IEEE 802.11 WLAN Environment

  • Moon Il-Young;Cho Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.2
    • /
    • pp.71-74
    • /
    • 2006
  • A basic access method about IEEE 802.11 MAC layer protocol using IEEE 802.11 wireless LANs is the DCF thatis based on the CSMA/CA. But, cause of IEEE 802.11 MAC layer uses original backoff algorithm (exponential backoff method), when collision occurred, the size of contention windows increases the double size Also, a time of packet transmission delay increases and efficienty is decreased by original backoff scheme. In this paper, we have analyzed TCP packet transmission time of IEEE 802.11 MAC DCF protocol for wireless LANs a proposed enhanced backoff algorithm. It is considered the transmission time of transmission control protocol (TCP) packet on the orthogonal frequency division multiplexing (OFDM) in additive white gaussian noise (A WGN) and Rician fading channel. From the results, a proposed enhanced backoff algorithm produces a better performance improvement than an original backoff in wireless LAN environment. Also, in OFDM/quadrature phase shift keying channel (QPSK), we can achieve that the transmission time in wireless channel decreases as the TCP packet size increases and based on the data collected, we can infer the correlation between packet size and the transmission time, allowing for an inference of the optimal packet size in the TCP layer.

A Study on CSMA/CA for WLAN Environment

  • Moon Il-Young;Cho Sung-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.530-533
    • /
    • 2006
  • Recently, a basic access method about IEEE 802.11 MAC layer protocol using IEEE 802.11 wireless LANs is the DCF thatis based on the CSMA/CA. But, cause of IEEE 802.11 MAC layer uses original backoff algorithm (exponential backoff method), when collision occurred, the size of contention windows increases the double size. Also, a time of packet transmission delay increases and efficiency is decreased by original backoff scheme. In this paper, we have analyzed TCP packet transmission time of IEEE 802.11 MAC DCF protocol for wireless LANs a proposed enhanced backoff algorithm. It is considered the transmission time of transmission control protocol (TCP) packet on the orthogonal frequency division multiplexing (OFDM) in additive white gaussian noise (AWGN) and Rician fading channel. From the results, a proposed enhanced backoff algorithm produces a better performance improvement than an original backoff in wireless LAN environment. Also, in OFDM/quadrature phase shift keying channel (QPSK), we can achieve that the transmission time in wireless channel decreases as the TCP packet size increases and based on the data collected, we can infer the correlation between packet size and the transmission time, allowing for an inference of the optimal packet size in the TCP layer.

  • PDF

An Improved Backoff Algorithm for the Random Access Protocol for the Ranging Subchannel of IEEE 802.16 Networks (IEEE 802.16 환경의 레인징 부채널에서 랜덤액세스 프로토콜의 Backoff 알고리즘 성능 향상 기법)

  • Kwon, Jeong-Min;Lee, Hyong-Woo;Cho, Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1267-1275
    • /
    • 2007
  • An improved backoff algorithm for retransmission randomization for OFDMA/CDMA/slotted ALOHA used in the ranging subchannel of IEEE 802.16 network is proposed. Exploiting the fact that a base station coordinates channel access using UL-/DL-MAP in the IEEE 802.16 networks, we propose a minor modification of the existing IEEE 802.16 in order to increase throughput, decrease delay variation and achieve a graceful performance degradation in case of overload channel condition of the random access protocol. The algorithm basically estimates the number of backlogged users and arrival rate using which, the BS calculates retransmission probability for the subscriber stations involved in a collision. Computer simulation is performed to demonstrate the effectiveness of the proposed algorithm and to compare the performance with existing binary exponential backoff algorithm.

The IEEE 802.11 MAC Protocol to solve Unfairness Problem in Multihop Wireless Ad Hoc Networks (다중 무선 에드혹 네트워크에서 불공정 문제를 해결하기 위한 802.11 MAC 프로토콜)

  • Nam, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.229-234
    • /
    • 2007
  • In the IEEE 802.11 Wireless Local Area Networks (WLANs), network nodes experiencing collisions on the shared channel need to backoff for a random period of time. which is uniformly selected from the Contention Window (CW) This contention window is dynamically controlled by the Binary Exponential Backoff (BEB) algorithm. The BEB scheme suffers from a unfairness problem and low throughput under high traffic load. In this paper, I propose a new backoff algorithm for use with the IEEE 802.11 Distributed Coordination Function.

  • PDF

The IEEE 802.11 MAC Protocol to solve Unfairness Problem in Multihop Wireless Ad Hoc Networks (다중 무선 에드혹 네트워크에서 불공정 문제를 해결하기 위한 802.11 MAC 프로토콜)

  • Nam, Jae-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.91-94
    • /
    • 2007
  • In the IEEE 802.11 Wireless Local Area Networks (WLANs), network nodes experiencing collisions on the shared channel need to backoff for a random period of time, which is uniformly selected from the Contention Window (CW). This contention window is dynamically controlled by the Binary Exponential Backoff (BEB) algorithm. The BEB scheme suffers from a fairness problem and low throughput under high traffic load. In this paper, I propose a new backoff algorithm for use with the IEEE 802.11 Distributed Coordination Function.

  • PDF

Fault/Attack Management Framework for Network Survivability in Next Generation Optical Internet Backbone (차세대 광 인터넷 백본망에서 망생존성을 위한 Fault/Attack Management 프레임워크)

  • 김성운;이준원
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.10
    • /
    • pp.67-78
    • /
    • 2003
  • As optical network technology advances and high bandwidth Internet is demanded for the exponential growth of internet traffic volumes, the Dense-Wavelength Division Multiplexing (DWDM) networks have been widely accepted as a promising approach to the Next Generation Optical Internet (NGOI) backbone networks for nation wide or global coverage. Important issues in the NGOI based on DWDM networks are the Routing and Wavelength Assignment(RWA) problem and survivability. Especially, fault/attack detection, localization and recovery schemes in All Optical Transport Network(AOTN) is one of the most important issues because a short service disruption in DWDM networks carrying extremely high data rates causes loss of vast traffic volumes. In this paper, we suggest a fault/attack management model for NGOI through analyzing fault/attack vulnerability of various optical backbone network devices and propose fault/attack recovery procedure considering Extended-LMP(Link Management Protocol) and RSVP-TE+(Resource Reservation Protocol-Traffic Engineering) as control protocols in IP/GMPLS over DWDM.

ACCB- Adaptive Congestion Control with backoff Algorithm for CoAP

  • Deshmukh, Sneha;Raisinghani, Vijay T.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.191-200
    • /
    • 2022
  • Constrained Application Protocol (CoAP) is a standardized protocol by the Internet Engineering Task Force (IETF) for the Internet of things (IoT). IoT devices have limited computation power, memory, and connectivity capabilities. One of the significant problems in IoT networks is congestion control. The CoAP standard has an exponential backoff congestion control mechanism, which may not be adequate for all IoT applications. Each IoT application would have different characteristics, requiring a novel algorithm to handle congestion in the IoT network. Unnecessary retransmissions, and packet collisions, caused due to lossy links and higher packet error rates, lead to congestion in the IoT network. This paper presents an adaptive congestion control protocol for CoAP, Adaptive Congestion Control with a Backoff algorithm (ACCB). AACB is an extension to our earlier protocol AdCoCoA. The proposed algorithm estimates RTT, RTTVAR, and RTO using dynamic factors instead of fixed values. Also, the backoff mechanism has dynamic factors to estimate the RTO value on retransmissions. This dynamic adaptation helps to improve CoAP performance and reduce retransmissions. The results show ACCB has significantly higher goodput (49.5%, 436.5%, 312.7%), packet delivery ratio (10.1%, 56%, 23.3%), and transmission rate (37.7%, 265%, 175.3%); compare to CoAP, CoCoA+ and AdCoCoA respectively in linear scenario. The results show ACCB has significantly higher goodput (60.5%, 482%,202.1%), packet delivery ratio (7.6%, 60.6%, 26%), and transmission rate (40.9%, 284%, 146.45%); compare to CoAP, CoCoA+ and AdCoCoA respectively in random walk scenario. ACCB has similar retransmission index compare to CoAp, CoCoA+ and AdCoCoA respectively in both the scenarios.

Implementation and Performance Evaluation of Transaction Protocol for Wireless Internet Services (무선 인터넷 서비스를 위한 트랜잭션 프로토콜의 구현과 성능평가)

  • Choi, Yoon-Suk;Lim, Kyung-Shik
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.447-458
    • /
    • 2002
  • In this paper, we design and implement Wireless Transaction Protocol(WTP) and evaluate it for wireless transaction processing in mobile computing environments. The design and implementation of WTP are based on the coroutine model that might be suitable for light-weight portable devices. We test the compatibility between our product and the other products such as Nokia, Kannel and WinWAP For the evaluation of WTP, we use an Internet simulator that can arbitrary generate random wireless errors based on the Gilbert model. In our experiment, the performance of WTP is measured and compared to those of Transmission Control Protocol(TCP) and TCP for Transactions. The experiment shows that WTP outperforms the other two protocols for wireless transaction processing in terms of throughput and delay. Especially, WTP shows much higher performance In ease of high error rate and high probability of burst errors. This comes from the fact that WTP uses a small number of packets to process a transaction compared to the other two protocols and introduces a fixed time interval for retransmission instead of the exponential backoff algorithm. The experiment also shows that the WTP performance is optimized when the retransmission counter is set to 5 or 6 in case of high burst error rate.