
IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

191

Manuscript received October 5, 2022
Manuscript revised October 20, 2022
https://doi.org/10.22937/IJCSNS.2022.22.10.25

ACCB- Adaptive Congestion Control with backoff Algorithm for CoAP

Sneha Deshmukh1† and Vijay T. Raisinghani2††,
sneha.deshmukh@nmims.edu vijay.raisinghani@nmims.edu

Mukesh Patel School of Technology Management and Engineering, NMIMS Deemed-to-be University, Mumbai, India

Abstract
Constrained Application Protocol (CoAP) is a standardized
protocol by the Internet Engineering Task Force (IETF) for the
Internet of things (IoT). IoT devices have limited computation
power, memory, and connectivity capabilities. One of the
significant problems in IoT networks is congestion control. The
CoAP standard has an exponential backoff congestion control
mechanism, which may not be adequate for all IoT applications.
Each IoT application would have different characteristics,
requiring a novel algorithm to handle congestion in the IoT network.
Unnecessary retransmissions, and packet collisions, caused due to
lossy links and higher packet error rates, lead to congestion in the
IoT network. This paper presents an adaptive congestion control
protocol for CoAP, Adaptive Congestion Control with a Backoff
algorithm (ACCB). AACB is an extension to our earlier protocol
AdCoCoA. The proposed algorithm estimates RTT, RTTVAR, and
RTO using dynamic factors instead of fixed values. Also, the
backoff mechanism has dynamic factors to estimate the RTO value
on retransmissions. This dynamic adaptation helps to improve
CoAP performance and reduce retransmissions. The results show
ACCB has significantly higher goodput (49.5%, 436.5%, 312.7%),
packet delivery ratio (10.1%, 56%, 23.3%), and transmission rate
(37.7%, 265%, 175.3%); compare to CoAP, CoCoA+ and
AdCoCoA respectively in linear scenario. The results show ACCB
has significantly higher goodput (60.5%, 482%,202.1%), packet
delivery ratio (7.6%, 60.6%, 26%), and transmission rate (40.9%,
284%, 146.45%); compare to CoAP, CoCoA+ and AdCoCoA
respectively in random walk scenario. ACCB has similar
retransmission index compare to CoAp, CoCoA+ and AdCoCoA
respectively in both the scenarios.
Keywords:
CoAP, congestion control, CoCoA+, AdCoCoA, ACCB.

1. Introduction

The Internet of things (IoT) has a significant role in
today's applications with the fifth generation of cellular
technology. IoT networks are a network of things capable of
sending, receiving, or exchanging information. The IoT
devices limited battery, memory, and processing capabilities.
They can communicate over links that may have higher
packet error rates and low throughput. These characteristics
may lead to more retransmissions, which eventually may
cause congestion in the network. Either loss of packet or
acknowledgment (ACK) is commonly considered an
indication of congestion. In IoT networks, packet or ACK
loss can happen due to (i) lossy links, link errors, or weak
signal strength and (ii) delay in receiving the ACK, which
leads to spurious retransmissions. Hence, an efficient

congestion control mechanism is required to minimize
unnecessary retransmissions and accurately estimate the
retransmission time out (RTO) value. The IETF has defined
a protocol stack for these IoT devices. In the IoT protocol
stack, Constrained Application Protocol (CoAP) operates
over UDP as the transport protocol – supports lightweight
internet applications.

CoAP uses a request/response interactive model
between the application endpoints. A message identifier
field help to detect duplicate messages. The Confirmable
(CON) message requires an acknowledgment (ACK),
whereas a Non-confirmable (NON) message doesn't require
an ACK. A Reset (RST) message indicates to the sender that
the received message is unable to process. CoAP provides
optional reliability using the RTO mechanism and an
exponential backoff policy. It chooses the initial RTO value
randomly, and later it uses a binary exponential backoff
(BEB) mechanism for computing the RTO value. The
random initial value could lead to unnecessary
retransmissions and, thus, network congestion [12]. Also,
the CoAP backoff mechanism often fails to utilize the
network dynamics to the best of its traffic conditions. As
Currently, the CoAP Simple Congestion Control/Advanced
(CoCoA) [11] is the standard protocol for CoAP by IETF.
CoCoA considers Round Trip Time (RTT) for estimating
Retransmission Timeout (RTO) along with a Variable
Backoff Factor (VBF) and aging mechanisms to provide
flexibility and monitored adaptation suited to the dynamic
nature of IoT networks. Each IoT application has different
characteristics and behavior, as a single standard algorithm
may be adequate to handle the congestion in the network.

Recent studies [1], [2] show that CoCoA+ can perform
better than basic CoAP in many scenarios but performs
significantly poorly in bursty traffic environments in a large-
scale network. In [3], [14], the authors have highlighted the
drawbacks of CoCoA+, based simulation evaluation. Many
researchers have proposed different mechanisms to
overcome the weaknesses of CoCoA+. Few researchers aim
to improve the performance of CoAP in a bursty traffic
environment by measuring the RTT precisely and
monitoring network conditions to minimize spurious
retransmission. Few researchers use a rate-based
mechanism [4], which utilizes the maximum bandwidth of
the bottleneck link and ensures fairness. Existing protocols
use fixed scaling factors for computations of the RTO, which
might not be suitable for a wide range of IoT scenarios, and

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

192

thus lead to higher retransmissions. Dynamic scaling factors
could estimate RTO to be large enough to minimize
retransmissions.

We propose a dynamic scaling factor for estimating
RTT, RTTVAR, and RTO to overcome the fixed scaling
values. The significant contribution of this work is an
adaptive congestion control with a backoff algorithm named
ACCB. ACCB estimates RTO using dynamic scaling factors
for smoothed round trip time (RTT), RTT variation
(RTTVAR), and RTO instead of fixed values. Also, ACCB
has a dynamic backoff mechanism for retransmission. The
proposed model is evaluated against CoAP, CoCoA+, and
AdCoCoA.
This paper is structured as follows: Section 2 summarizes
the existing congestion control mechanisms for CoAP.
Section 3 describes the design and working of the proposed
protocol. Section 4 presents the evaluation scenarios and
analyzes the Contiki OS Cooja [20] simulation results. The
conclusion in Section 5.

2. Literature survey

 In [1] and [2], the authors have evaluated the performance
of CoAP and CoCoA in environments varying from emulated
Zigbee networks to large-scale IoT networks. In [5], CoCoA
is considered in large-scale IoT networks in which GPRS is
employed to connect IoT nodes. A. Betzler et al. compared
CoCoA with congestion control protocols designed for TCP
applications [2]. The authors reported that CoCoA performs
similarly or better than TCP-based protocols. Similar
interpretations are documented in [2]; the authors evaluated
CoCoA with different traffic patterns. In [6], the authors
proposed modified CoCoA with 4-State-Strong, which can
distinguish loss due to lossy links and congestion. The
reported results show better performance than CoCoA, but
the loss rate is high. In [7], the authors proposed an enhanced
version of CoCoA, named CoCoA-E. It uses the Eifel
retransmission timer [15] for estimating RTO. The results
show that CoCoA-E performs significantly better than
CoCoA in the presence of lesser traffic fluctuations. In [5],
the authors evaluate CoCoA-S (a variant of CoCoA), which
considers only strong-RTO estimator, basic CoAP, CoCoA,
and TCP-based protocols like Linux RTO [16], peaker-
hopper TCP RTO [17]. The results show that CoCoA
performance is better than the other evaluated protocols with
lower traffic rates.

 In [8], the authors proposed an Enhanced version of
CoCoA, which measures RTT accurately using a
retransmission count field. The authors reported that the
proposed protocol performs better than CoAP, CoCoA, and
CoCoA-E. In [3], [14], the authors evaluated CoCoA+ with
bursty traffic and reported its shortcomings of CoCoA+.
CoCoA+ performs worst with bursty traffic; RTO and RTT
are too close, which may result in spurious retransmissions.
A novel approach called pCoCoA is designed to overcome
the limitations of CoCoA+. pCoCoA measures RTT

precisely using a timestamp and aims to reduce spurious
retransmissions. The results show that pCoCoA minimizes
unnecessary retransmissions without affecting the
throughput and delay. However, some of the fixed values
introduced in pCoCoA might not be suitable for many IoT
scenarios. In [4], the authors propose a new rate-based
congestion control mechanism for CoAP, named CoAP-R.
pCoCoA and CoAP-R aim to improve the performance of
CoAP in a bursty traffic environment. CoAP-R is designed
to achieve maximum bandwidth from the bottleneck link
capacity and allocate the network resources based on the
max-min fairness. The results show that CoAP-R distributes
the network resources equally amongst the senders and
reduces the delay compared to CoAP and CoCoA.

 In [9], the author proposes CoCoA++, a delay gradient-
based mechanism with a probability backoff factor.
CoCoA++ is compared with CoCoA+ using a simulator and
real testbed. The results show that CoCoA++ has low RTO
values, reduces transmission delay, and increases
transmission rate compared to CoCoA+ in different IoT
scenarios. In [10], the authors propose a rate-based
congestion control protocol for CoAP derived from TCP
Bottleneck Bandwidth and Round-trip propagation time
(BBR) [18], named BDP-CoAP. BDP-CoAP design copes
with lossy links and the short-term unfairness of channel
access in IoT networks. The results show that BPD-CoAP
significantly improves the fairness of data connections and
reduces the number of retransmissions while achieving
throughput comparable to CoAP and CoCoA+.

 In [22], the author has used learning automata to design
a congestion control protocol for CoAP. A group of tunable
parameters is used to control congestion in the network and
enhance the network performance. CCCLA performs better
than CoAP CC, CoCoA, and TCP-Siam. In [23], the authors
enhance CoCoA using a machine-learning mechanism to
tune the RTO parameter values using node count, packet size,
and PDR. mlCoCoA achieves higher throughput than CoAP
CC and CoCoA. In [24], the author has designed three RTO
estimators which help to determine the exact network status.
CACC performs better than CoAP and CoCoA in static
scenarios.
 An improved adaptive CoAP [25] determines the RTO
value using packet loss ratio and RTT. RTT-CoAP [26] has
a novel approach to detecting congestion in the network
using the growth of RTT variance coupled with thresholds
on CoAP message losses. CoAP Eifel [27] is a modified
version of CoAP which uses only strong RTT to estimate the
RTO value. AdCoCoA [28] considers link quality, link delay,
and RTT deviation to calculate the RTO value. CACC [29]
considers strong, weak, and failed RTT to identify the exact
network status and provide an adaptive congestion control
mechanism. FASOR [30] determines whether packet loss is
due to the wireless link environment or congestion by
considering three unique features – self-adaptive
retransmission timer backoff, slow RTO computation, and
fast RTO computation mechanism. DCC-CoAP [31] has an

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

193

efficient way of predicting network congestion; it uses a
combination of distance between nodes and round RTT
measurements, which limits the losses of CoAP messages.
 RCoAP [32] is a rate control-based scheme for CoAP
designed for reliable bursty data transfer. It consists of four
states – initial, normal, loss detection, and backoff.
psoCoCoA [33] is a variation of CoCoA, which applies
random and optimal parameter-driven simulation to
optimize default CoAP parameters and update the fitness
and velocity positions to adapt to the traffic conditions.
 In this section, we summarized the existing protocols
designed to improve the performance of CoAP. The
following section discusses our adaptive congestion
control's design and working mechanism with the backoff
algorithm (ACCB) for CoAP.

3. Adaptive Congestion Control with Backoff
algorithm (ACCB)

As discussed in section II, most existing congestion control
protocols for CoAP use fixed scaling factors for the RTO
estimator. These fixed factors might not be suitable in many
IoT scenarios, for example, connected cars or self-driven
cars. The algorithm considers the varying density (low to
high) and mobility speed of vehicles (slow to fast) and
adapts as per the characteristic of the application. Hence,
dynamic scaling factors may help to improve the
performance of CoAP for such applications. ACCB is an
enhancement of AdCoCoA, which (i) estimates dynamic
scaling factors using multiple network parameters instead of
a single parameter and (ii) uses the Adaptive backoff (ABF)
mechanism instead of the variable backoff (VBF)
mechanism. AdCoCoA determines dynamic scaling factor
using only RTT variance, whereas ACCB determines using
RTT variance, retransmission ratio, and packet loss ratio.
Figure 1 shows the overview of the ACCB mechanism for
CoAP. ACCB measures RTT using a timestamp; hence only
strong RTT contributes to RTO estimation. On sending the
CON message, if the receiver is unknown, then the default
CoAP mechanism is used for the first time. On estimating
the first measured RTT, ACCB calculates Smoothed RTT,
RTTVAR, and RTO, the same as AdCoCoA. ACCB uses
dynamic scaling and smoothing factors for subsequent
measured RTTs to calculate RTT, RTTVAR, and RTO
values. ACCB calculates dynamic scaling and smoothing
characteristics for estimating RTT, RTTVAR, and RTO.

Figure 1: An overview of the ACCB mechanism

 To calculate RTT deviation, retransmission ratio, and
packet loss ratio.
RTT deviation = ((RTTm – RTTcurrent)/ RTTcurrent) (eq 1)
If the RTT deviation exceeds one, the RTT deviation value
equals 0.9.

 retransmission ratio

 (eq 2)

If the retransmission ratio is zero, the retransmission ratio
value equals 0.1.

packet loss ratio

 (eq 3)

If the packet loss ratio is zero, then the packet loss ratio
value equals 0.1.
 To calculate dynamic smoothing factors alpha and beta.
alpha = ((RTT deviation * 0.5) + (retransmission ratio *
0.25) + (packet loss ratio * 0.25)) (eq 4)
beta = alpha * 0.5 ; (eq 5)
 To calculate smoothed RTT, RTTVAR, and RTO values.
RTTcurrent = (1 - alpha) * RTTm + alpha * RTTcurrent (eq 6)
RTTVARcurrent = (1 - beta) * RTTVARprevious + beta * |
RTTm – RTTcurrent| (eq 7)
RTOcurrent = RTTcurrent + K * RTTVARcurrent (eq 8)
Where K is the scaling factor. If the RTT deviation value
exceeds one, K =6; else, K=4.
RTOoverall = 0.5*RTOprevious + 0.5 * RTOcurrent (eq 9)

The Adaptive backoff factor (ABF) mechanism calculates
the RTO value on retransmissions. If RTOoverall less than one
second, RTOnew = RTOprevious + (1 + RTT deviation); else,
RTOnew = RTOprevious + RTT deviation.

In this section, we described the design and working of
the ACCB algorithm. The following section discusses the

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

194

simulations used to validate ACCB against CoAP, CoCoA+,
and AdCoCoA.

4. Performance evaluation

In this section, we evaluate the performance of ACCB with
CoAP, CoCoA+, and AdCoCoA through simulations. This
section includes the simulator's configuration, the traffic
scenario, the network topologies, and the performance
metrics used to carry out the performance evaluations.

4.1 Simulation setup
We use the Cooja simulator [20], a simulation platform
included in Contiki 3.0 toolset [20], that allows emulating
off-the-shelf wireless sensor node hardware. At the physical
(PHY) and MAC layers, the nodes implement IEEE 802.15.4,
using a transmission rate of 250 kbps in the 2.4 GHz radio
band. The Cooja simulator and Zolerita Z1 motes are used for
clients and servers. Z1 motes have 92KB of ROM, enabling
us to code applications and implement congestion control
mechanisms. T-mote Sky motes are used to configure the
border router because we use IPv6 Routing Protocol for Low-
Power and Lossy Networks [19] in storing mode, which
requires a larger RAM capacity provided by Sky motes. The
relevant simulation parameters are summarized in Table 2.

Table 1. Simulation parameters

Operating system Contiki 3.0
Simulator Cooja
Area Linear – varies from 20 m * 10 m to

500 m * 20 m, Random - ranges from
50m * 50 m to 400 m * 400 m

Radio Medium Unit Disk Graph Medium (UDGM) -
Distance loss

Radio duty cycling NullRDC
Mote type T-mote sky and Zolerita Z1
Number of nodes 40, 80, 120, and 160
Topologies Linear (chain) and Random
Node transmission
range

10 m

Node interference range 20 m
Interference level 10%, 25%, 35%, 50%
Traffic type Constant bit rate (periodic)
Speed of nodes Zero km/hr, 15- 34 km/hr, 35- 60

km/hr, 61- 80 km/hr, 81- 120 km/hr
Packet size 100 bytes
Retransmission limit 4
Simulation time 300 seconds

Figure 2 shows the topologies used, nodeID 1 represents

the RPL border router, nodeID 2 represents the CoAP
server, and the rest are CoAP clients. After the RPL setup,
the clients periodically send messages targeted at the
servers. Every scenario is run 15 times with a different
random seed with a simulation time of 300 seconds. The
simulation results are plotted against the number of nodes,
interference level, and speed of nodes using a box-and-
whisker plot diagram. To determine the difference among
the protocols, we used Tukey's Honestly Significance test

with a confidence level of 90%, evaluated using R
programming [21].

(a) Linear topology

(b) Random topology

Figure 2: Topologies (a) Linear (b) Random
The metrics used in the performance evaluation are i) the

goodput, measured as the total amount of data successfully
received per unit of time; ii) the packet delivery ratio,
computed as the ratio of the total number of received CoAP
messages over the number of sent CoAP messages in a given
time interval; iii) the retransmission rate, evaluated as the
percentage of retransmitted packets over the total number of
packets sent by the CoAP clients; and iv) the packet sending
rate at the application level, the total number of packets sent
by the CoAP clients in a given time interval.

Linear scenario:
 Figure 3 shows the comparative goodput of CoAP,
CoCoA+, AdCoCoA, and ACCB congestion control. The
goodput achieved in the linear scenario with ACCB is
statistically higher by approx. 49.5%, 436.5%, 312.7% than
CoAP, CoCoA+, and AdCoCoA as p-value is (0 < 0.10)
respectively. Figure 3 (a) shows goodput against the
protocols for the number of nodes 40, 80, 120, and 160. The
goodput of ACCB is significantly higher by approx. 41%,
417.1%, 221.1% than CoAP, CoCoA+, and AdCoCoA
respectively. As the number of nodes increases, the goodput
also increases. Figure 3 (b) shows goodput against the
protocols for interference level (IF level) 10%, 25%, 35%,
50%. The goodput of ACCB is significantly higher by
approx. 45.6%, 441.4%, 245.4% than CoAP, CoCoA+, and
AdCoCoA respectively. As the interference level increases,

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

195

the goodput of decreases. Figure 3 (c) shows goodput against
the protocols for speed of nodes Zero km/hr, 15- 34 km/hr, 35- 60

km/hr, 61- 80 km/hr, 81- 120 km/hr. The goodput of ACCB is
significantly higher by approx. 45.6%, 410.9%, 205.6% than
CoAP, CoCoA+, and AdCoCoA respectively. As the speed
of nodes increases, the goodput decreases.
 Figure 4 shows the comparative packet delivery ratio of
CoAP, CoCoA+, AdCoCoA, and ACCB congestion control.
The packet delivery ratio achieved in the linear scenario with
ACCB is statistically higher by approx. 10.12%, 56.05%,
28.3% than CoAP, CoCoA+, and AdCoCoA as p-value is
1.7E-11 < 0.10) respectively. Figure 4 (a) shows the packet
delivery ratio against the protocols for the number of nodes
40, 80, 120, and 160. For 40 nodes, the goodput of ACCB is
significantly higher by approx. 9.2%, 53.3%, 26.9% than
CoAP, CoCoA+, and AdCoCoA respectively. Figure 4 (b)
shows packet delivery ratio against the protocols for

interference level (IF level) 10%, 25%, 35%, 50%. The
goodput of ACCB is statistically higher by approx. 10.2%,
39.5%, 20.4% than CoAP, CoCoA+, and AdCoCoA as
respectively. Figure 4 (c) shows packet delivery ratio against
the protocols for speed of nodes Zero km/hr, 15- 34 km/hr, 35- 60

km/hr, 61- 80 km/hr, 81- 120 km/hr. The packet delivery ratio of
ACCB is statistically higher by approx. 6.4%, 41.3%, 23.1%
than CoAP, CoCoA+, and AdCoCoA as respectively.
 Figure 5 shows the comparative retransmission rate of
CoAP, CoCoA+, AdCoCoA, and ACCB congestion control.
The retransmission rate achieved in the linear scenario with
ACCB is the same as CoAP, CoCoA+, and AdCoCoA,
respectively.

(a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes
Figure 3: Goodput v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes

(a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes

Figure 4: Packet delivery ratio v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

196

(a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes

Figure 5: Retransmission rate v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes

(a)Varying number of nod (b)Varying interference level (c) Varying speed of nodes

Figure 6: Packet sending rate v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying the speed of nodes

Figure 5 (a), (b), and (c) show the retransmission rate against
protocols by varying the number of nodes, interference level,
and speed of nodes. The retransmission rate is directly
proportional to the number of nodes. As the interference
level increases, the retransmission rate also increases. As the
speed of nodes increases, the retransmission rate also
increases.
 Figure 6 shows the comparative packet sending rate of
CoAP, CoCoA+, AdCoCoA, and ACCB congestion control.
The packet sending rate achieved in the linear scenario with
ACCB is statistically higher by approx. 37.7%, 265%, 175.3%
than CoAP, CoCoA+, and AdCoCoA as p-value is (0 < 0.10)
respectively. Figure 6 (a) shows the packet sending rate
against the protocols for the number of nodes 40, 80, 120,
and 160. The packet-sending rate of ACCB is significantly
higher by approx. 39.9%, 255%, 136% than CoAP, CoCoA+,
and AdCoCoA respectively. Figure 6 (b) shows packet
sending rate against the protocols for interference level (IF
level) 10%, 25%, 35%, 50%. The packet-sending rate of

ACCB is significantly higher by approx. 37.5%, 272.3%,
180.7% than CoAP, CoCoA+, and AdCoCoA respectively.
Figure 6 (c) shows packet sending rate against the protocols
for speed of nodes Zero km/hr, 15- 34 km/hr, 35- 60 km/hr, 61- 80

km/hr, 81- 120 km/hr. The packet-sending rate of ACCB is
significantly higher by approx. 41.7%, 260.4%, 165.9% than
CoAP, CoCoA+, and AdCoCoA respectively.
 ACCB estimates RTO per RTT measured and considers
the multiple network status parameters. The dynamic
smoothing factor scales the RTO as per the change fraction
compared to the current RTT, ensuring the maximum CoAP
message is received. Whereas AdCoCoA considers single
network status parameters to calculate dynamic scaling
factors. CoCoA uses fixed scaling factors for calculating
RTT, RTTVAR, and RTO. CoAP does not consider any
network status parameter and doubles the RTO value on
retransmission.

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

197

Random scenario:
Figure 7 shows the comparative goodput of CoAP,

CoCoA+, AdCoCoA, and ACCB congestion control. The
goodput achieved in the random scenario with ACCB is
statistically higher by approx. 60.5%, 482%, 202.1% than
CoAP, CoCoA+, and AdCoCoA as p-value is (0 < 0.10)
respectively. Figure 7 (a) shows goodput against the
protocols for the number of nodes 40, 80, 120, and 160. The
goodput of ACCB is significantly higher by approx. 63.8%,
482.4%, 211.7% than CoAP, CoCoA+, and AdCoCoA
respectively. Figure 7 (b) shows goodput against the
protocols for interference level (IF level) 10%, 25%, 35%,
50%. The goodput of ACCB is significantly higher by approx.
61.6%, 500.2%, 228% than CoAP, CoCoA+, and AdCoCoA
respectively. Figure 7 (c) shows goodput against the
protocols for speed of nodes Zero km/hr, 15- 34 km/hr, 35-
60 km/hr, 61- 80 km/hr, 81- 120 km/hr. The goodput of
ACCB is significantly higher by approx. 65.5%, 552.2%, 218%
than CoAP, CoCoA+, and AdCoCoA respectively.

Figure 8 shows the comparative packet delivery ratio of
CoAP, CoCoA+, AdCoCoA, and ACCB congestion control.
The packet delivery ratio achieved in the random scenario
with ACCB is significantly higher by approx. 7.6%, 60.6%,
26% than CoAP, CoCoA+, and AdCoCoA p-value is (2.5E-
11 < 0.10) respectively. Figure 8 (a) shows the packet

delivery ratio against the protocols for the number of nodes
40, 80, 120, and 160. The goodput of ACCB is significantly
higher by approx. 7.7%, 60.6%, 25.3% than CoAP, CoCoA+,
and AdCoCoA respectively. Figure 8 (b) shows packet
delivery ratio against the protocols for interference level (IF
level) 10%, 25%, 35%, 50%. The goodput of ACCB is
significantly higher by approx. 7.8%, 64.8%, 30% than
CoAP, CoCoA+, and AdCoCoA respectively. Figure 8 (c)
shows packet delivery ratio against the protocols for speed of
nodes Zero km/hr, 15- 34 km/hr, 35- 60 km/hr, 61- 80 km/hr,
81- 120 km/hr. The packet delivery ratio of ACCB is
significantly higher by approx. 8.1%, 59%, 29.1% than
CoAP, CoCoA+, and AdCoCoA respectively.

Figure 9 shows the comparative retransmission rate of
CoAP, CoCoA+, AdCoCoA, and ACCB congestion control.
The retransmission rate achieved in the random scenario with
ACCB is the same as CoAP, CoCoA+, and AdCoCoA,
respectively. Figure 9 (a), (b), and (c) show the
retransmission rate against protocols by varying the number
of nodes, interference level, and speed of nodes. As the
number of nodes increases, the retransmission rate also
increases.

(a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes

Figure 7: Goodput v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

198

(a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes

Figure 8: Packet delivery ratio v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes

(a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes

Figure 9: Retransmission rate v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes

(a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes

Figure 10: Packet sending rate v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying the speed of nodes

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

199

As the interference level increases, the retransmission
rate also increases. As the speed of nodes increases, the
retransmission rate also increases.

Figure 10 shows the comparative packet sending rate of
CoAP, CoCoA+, AdCoCoA, and ACCB congestion control.
The packet sending rate achieved in the random scenario with
ACCB is statistically higher by approx. 40.9%, 284%, 146.4%
than CoAP, CoCoA+, and AdCoCoA as p-value is (0 < 0.10)
respectively. Figure 10(a) shows goodput against the
protocols for the number of nodes 40, 80, 120, and 160. The
goodput of ACCB is significantly higher by approx. 42.1%,
277.4%, 126.9% than CoAP, CoCoA+, and AdCoCoA
respectively. Figure 10(b) shows goodput against the
protocols for interference level (IF level) 10%, 25%, 35%,
50%. The goodput of ACCB is statistically higher by approx.
41.7%, 286.1%, 150.1% than CoAP, CoCoA+, and
AdCoCoA respectively. Figure 10(c) shows goodput against
the protocols for speed of nodes Zero km/hr, 15- 34 km/hr,
35- 60 km/hr, 61- 80 km/hr, 81- 120 km/hr. The goodput of
ACCB is statistically higher by approx. 42.2%, 285.4%,
148.8% than CoAP, CoCoA+, and AdCoCoA respectively.

ACCB estimates dynamic smoothing factors per the
change determined by RTT deviation, retransmission ratio,
and packet loss ratio. These dynamic scaling factors help
estimate RTO large enough, ensuring maximum CoAP
message to be received. CoCoA uses fixed scaling factors for
calculating RTT, RTTVAR, and RTO. Whereas AdCoCoA
considers a single network status parameter to calculate
dynamic scaling factors. CoAP does not consider any
network status parameter and doubles the RTO value on
retransmission.

In this section, we describe the simulation setup,
evaluation parameters, and simulation results.

5. Conclusion

In recent studies, most existing protocols use fixed
scaling factors for estimating RTO. This paper proposes an
Adaptive congestion control with a backoff algorithm
(ACCB) for CoAP in IoT networks. ACCB has a dynamic-
scaling-factor-based mechanism for RTT, RTTVAR, and
RTO estimation. ACCB adaptively computes the RTO
depending on the changes in the network status. ACCB
considers RTT deviation, retransmission ratio, and packet
loss ratio to calculate dynamic scaling and smoothing factors.
Adaptive factors and ABF mechanisms would help improve
performance and minimize retransmissions. Our simulation
results show that ACCB performs better than CoAP,
CoCoA+, and AdCoCoa in linear and random scenarios.
ACCB has significantly higher goodput 49.5%, 436.5%, and
312.7% compare to CoAP, CoCoA+ and AdCoCoA
respectively in linear scenario. ACCB has significantly

higher packet delivery ratio 10.1%, 56%, 23.3% compare to
CoAP, CoCoA+ and AdCoCoA respectively in linear
scenario. ACCB has significantly higher packet sending rate
37.7%, 265%, and 175.3% compare to CoAP, CoCoA+ and
AdCoCoA respectively in linear scenario. The results show
ACCB has significantly higher goodput (60.5%,
482%,202.1%), packet delivery ratio (7.6%, 60.6%, 26%),
and packet sending rate (40.9%, 284%, 146.45%), compared
to CoAP, CoCoA+ and AdCoCoA respectively in random
walk scenario. ACCB has similar retransmission rate
compared to CoAP, CoCoA+ and AdCoCoA in both the
scenarios.

The estimated RTO is large enough; packets are received
in the first or minimum attempts. ACCB helps increase the
packet delivery ratio and sending rate and achieve higher
goodput. ACCB performs better because it determines
dynamic scaling factors based on the RTT deviation,
retransmission ratio, and packet loss ratio. Due to dynamic
scaling factors, packet loss and retransmission attempts are
reduced. For future research, we plan to extend our work to
validate the proposed algorithm by varying packet size, the
density of nodes, traffic type, and inter-arrival time.

References
[1] E. Ancillotti and R. Bruno, "Comparison of CoAP and CoCoA+

congestion control mechanisms for different IoT application
scenarios," 2017 IEEE Symposium on Computers and
Communications (ISCC), Heraklion, 2017, pp. 1186-1192, DOI:
10.1109/ISCC.2017.8024686..

[2] I. Järvinen, L. Daniel and M. Kojo, "Experimental evaluation of
alternative congestion control algorithms for Constrained Application
Protocol (CoAP)," 2015 IEEE 2nd World Forum on Internet of Things
(WF-IoT), Milan, 2015, pp. 453-458, DOI: 10.1109/WF-
IoT.2015.7389097.

[3] S. Bolettieri, G. Tanganelli, C. Vallati, and E. Mingozzi, "pCoCoA: A
precise congestion control algorithm for CoAP," Ad Hoc Networks,
vol. 80, pp. 116–129, 2018.

[4] E. Ancillotti, R. Bruno, C. Vallati and E. Mingozzi, "Design and
Evaluation of a Rate-Based Congestion Control Mechanism in CoAP
for IoT Applications," 2018 IEEE 19th International Symposium on "A
World of Wireless, Mobile and Multimedia Networks" (WoWMoM),
Chania, 2018, pp. 14-15, DOI: 10.1109/WoWMoM.2018.8449736.

[5] A. Betzler, C. Gomez, I. Demirkol and J. Paradells, "CoAP congestion
control for the internet of things," in IEEE Communications Magazine,
vol. 54, no. 7, pp. 154-160, July 2016, DOI:
10.1109/MCOM.2016.7509394.

[6] R. Bhalerao, S. S. Subramanian and J. Pasquale, "An analysis and
improvement of congestion control in the CoAP Internet-of-Things
protocol," 2016 13th IEEE Annual Consumer Communications &
Networking Conference (CCNC), Las Vegas, NV, 2016, pp. 889-894,
DOI: 10.1109/CCNC.2016.7444906.

[7] Balandina E., Koucheryavy Y., Gurtov A. (2013) Computing the
Retransmission Timeout in CoAP. In: Balandin S., Andreev S., Kou-
cheryavy Y. (eds) Internet of Things, Smart Spaces, and Next
Generation Networking. Lecture Notes in Computer Science, vol 8121.
Spring- er, Berlin, Heidelberg.

[8] Lee, Jung June, Kyung Tae Kim, and Hee Yong Youn. "Enhancement
of Congestion Control of Constrained Application
Protocol/Congestion Control/Advanced for Internet of Things

IJCSNS International Journal of Computer Science and Network Security, VOL.22 No.10, October 2022

200

Environment." International Journal of Distributed Sensor Networks,
(November 2016).

[9] Vishal Rathod, Natasha Jeppu, Samanvita Sastry, Shruti Singala,
Mohit P. Tahiliani, CoCoA++: Delay gradient based congestion
control for Internet of Things, Future Generation Computer Systems,
Volume 100, 2019, Pages 1053-1072.

[10] E. Ancillotti and R. Bruno, "BDP-CoAP: Leveraging Bandwidth-
Delay Product for Congestion Control in CoAP," 2019 IEEE 5th World
Forum on Internet of Things (WF-IoT), Limerick, Ireland, 2019, pp.
656-661, DOI: 10.1109/WF-IoT.2019.8767177.

[11]Bormann, C., Betzler, A., Gomez, C., & Demirkol, I. (2017). “CoAP
simple congestion control/advanced.” Working Draft, IETF Secretariat,
Internet-Draft draft-bormann-core-cocoa-01.

[12]Shelby, Z., K. Hartke, and C. Bormann. "The Constrained Application
Protocol (CoAP)." (2014).

[13]August Betzler, Carles Gomez, Ilker Demirkol, Josep Paradells, "Co-
CoA+: An advanced congestion control mechanism for CoAP," Ad
Hoc Networks, Volume 33, 2015, Pages 126-139.

[14] Bolettieri S, Vallati C, Tanganelli G, Mingozzi E. Highlighting some
shortcomings of the CoCoA+ congestion control algorithm. In: Ad-hoc,
Mobile, and Wireless Networks: 16th International Conference
onAdHocNetworks and Wireless, ADHOC-NOW2017, Messina, Italy,
September 20-22, 2017, Proceedings. Cham, Switzerland: Springer
International Publishing; 2017:213-220.

[15]R. Ludwig and K. Sklower "The Eifel Retransmission Timer," ACM
SIGCOMM Computer Communication Review, Vol. 30, Issue 3, pp.
17-27, July 2000.

[16] Pasi Sarolahti and Alexey Kuznetsov. 2002. Congestion Control in
Linux TCP. In Proceedings of the FREENIX Track: 2002 USENIX
Annual Technical Conference. USENIX Association, USA, 2002, pp.
49–62.

[17]H. Ekstrom and R. Ludwig, "The Peak-Hopper: A New End-to-End
Retransmission Timer for Reliable Unicast Transport," Proc. IEEE
INFOCOM 2004, vol. 4, Mar. 2004, pp. 2502–13.

[18]N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
"BBR: Congestion-Based Congestion Control," ACM Queue, vol. 14,
no. 5, pp. 50:20–50:53, October 2016.

[19]T. Winter, P. Thubert, A. Brandt, T. Clausen, J. Hui, R. Kelsey, P. Levis,
K. Pister, R. Struik, and J. Vasseur, "RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks," IETF RFC 6550, March 2012.

[20]The official web page of the Cooja simulator in Contiki OS, URI:
http://www.contiki-os.org/. Retrieved on 08.04.2020.

[21]R Core Team (2018). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
URL https://www.R-project.org/.

[22] CCLCA Soulmaz Gheisari, Ehsan Tahavori, "CCCLA: A cognitive
approach for congestion control in Internet of Things using a game of
learning automata," Computer Communications, Volume 147, 2019,
Pages 40-49, ISSN 0140-3664,
doi.org/10.1016/j.comcom.2019.08.017.

[23] DEMIR, Alper Kamil, and Fatih ABUT. "mlCoCoA: a machine
learning-based congestion control for CoAP," Turkish Journal of
electrical engineering & computer sciences,2018. doi:10.3906/elk-

[24] Akpakwu GA, Hancke GP, Abu-Mahfouz AM. "CACC: Context-
aware congestion control approach for lightweight CoAP/UDP-based
Internet of Things traffic," Transaction Emerging Tel Tech. 2019;
e3822. https://doi.org/10.1002/ett.3822.

[25] F. Ouakasse and S. Rakrak, "An improved adaptive CoAP congestion
control algorithm," Int. J. Online Eng., vol. 15, no. 3, pp. 96–109, 2019.

[26] E. Ancillotti, S. Bolettieri, and R. Bruno, "RTT-based congestion
control for the internet of things," in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2018, vol. 10866 LNCS, pp. 3–
15.

[27] V. J. Rathod, S. Krishnam, A. Kumar, G. Baraskar, and M. P. Tahiliani,
"Effective RTO estimation using Eifel Retransmission Timer in
CoAP," Proc. CONECCT 2020 - 6th IEEE Int. Conf. Electron. Comput.
Commun. Technol., no. ii, 2020.

[28] S. Deshmukh and V. T. Raisinghani, "AdCoCoA- Adaptive
Congestion Control Algorithm for CoAP," 2020 11th Int. Conf.
Comput. Commun. Netw. Technol. ICCCNT 2020, 2020.

[29] G. A. Akpakwu, G. P. Hancke, and A. M. Abu-Mahfouz, "CACC:
Context-aware congestion control approach for lightweight
CoAP/UDP-based Internet of Things traffic," Trans. Emerg.
Telecommun. Technol., vol. 31, no. 2, pp. 1–19, 2020.

[30] I. Jarvinen, I. Raitahila, Z. Cao, and M. Kojo, "FASOR Retransmission
Timeout and Congestion Control Mechanism for CoAP," in 2018 IEEE
Global Communications Conference, GLOBECOM 2018 -
Proceedings, 2019.

[31] S. Bansal and D. Kumar, "Distance-based congestion control
mechanism for CoAP in IoT," IET Commun., vol. 14, no. 19, pp. 3512–
3520, 2020.

[32] D. H. Hoang and T. T. D. Le, "RCOAP: A Rate Control Scheme for
Reliable Bursty Data Transfer in IoT Networks," in IEEE Access, vol.
9, pp. 169281-169298, 2021, DOI: 10.1109/ACCESS.2021.3135435.

[33] Godfrey A. Akpakwu & Gerhard P. Hancke & Adnan M. Abu‐
Mahfouz, 2022. "An optimization‐based congestion control for
constrained application protocol," International Journal of Network
Management, John Wiley & Sons, vol. 32(1), January. DOI:
10.1002/nem.2178.

Sneha Deshmukh is a faculty member at
the Dept of Information Technology,
MPSTME, NMIMS Deemed-to-be
University. Her research interests are
wireless sensor networks and education
technology.

Vijay Raisinghani (S. Member IEEE) is
a faculty member at the Dept of
Information Technology, MPSTME,
NMIMS Deemed-to-be University. His
research interests are computer networks
and education technology.

