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Abstract 
Constrained Application Protocol (CoAP) is a standardized 
protocol by the Internet Engineering Task Force (IETF) for the 
Internet of things (IoT). IoT devices have limited computation 
power, memory, and connectivity capabilities. One of the 
significant problems in IoT networks is congestion control. The 
CoAP standard has an exponential backoff congestion control 
mechanism, which may not be adequate for all IoT applications. 
Each IoT application would have different characteristics, 
requiring a novel algorithm to handle congestion in the IoT network. 
Unnecessary retransmissions, and packet collisions, caused due to 
lossy links and higher packet error rates, lead to congestion in the 
IoT network. This paper presents an adaptive congestion control 
protocol for CoAP, Adaptive Congestion Control with a Backoff 
algorithm (ACCB). AACB is an extension to our earlier protocol 
AdCoCoA. The proposed algorithm estimates RTT, RTTVAR, and 
RTO using dynamic factors instead of fixed values. Also, the 
backoff mechanism has dynamic factors to estimate the RTO value 
on retransmissions. This dynamic adaptation helps to improve 
CoAP performance and reduce retransmissions. The results show 
ACCB has significantly higher goodput (49.5%, 436.5%, 312.7%), 
packet delivery ratio (10.1%, 56%, 23.3%), and transmission rate 
(37.7%, 265%, 175.3%); compare to CoAP, CoCoA+ and 
AdCoCoA respectively in linear scenario. The results show ACCB 
has significantly higher goodput (60.5%, 482%,202.1%), packet 
delivery ratio (7.6%, 60.6%, 26%), and transmission rate (40.9%, 
284%, 146.45%); compare to CoAP, CoCoA+ and AdCoCoA 
respectively in random walk scenario. ACCB has similar 
retransmission index compare to CoAp, CoCoA+ and AdCoCoA 
respectively in both the scenarios. 
Keywords: 
CoAP, congestion control, CoCoA+, AdCoCoA, ACCB.  

 

1. Introduction 

The Internet of things (IoT) has a significant role in 
today's applications with the fifth generation of cellular 
technology. IoT networks are a network of things capable of 
sending, receiving, or exchanging information. The IoT 
devices limited battery, memory, and processing capabilities. 
They can communicate over links that may have higher 
packet error rates and low throughput. These characteristics 
may lead to more retransmissions, which eventually may 
cause congestion in the network. Either loss of packet or 
acknowledgment (ACK) is commonly considered an 
indication of congestion. In IoT networks, packet or ACK 
loss can happen due to (i) lossy links, link errors, or weak 
signal strength and (ii) delay in receiving the ACK, which 
leads to spurious retransmissions. Hence, an efficient 

congestion control mechanism is required to minimize 
unnecessary retransmissions and accurately estimate the 
retransmission time out (RTO) value. The IETF has defined 
a protocol stack for these IoT devices. In the IoT protocol 
stack, Constrained Application Protocol (CoAP) operates 
over UDP as the transport protocol – supports lightweight 
internet applications.  

CoAP uses a request/response interactive model 
between the application endpoints. A message identifier 
field help to detect duplicate messages. The Confirmable 
(CON) message requires an acknowledgment (ACK), 
whereas a Non-confirmable (NON) message doesn't require 
an ACK. A Reset (RST) message indicates to the sender that 
the received message is unable to process. CoAP provides 
optional reliability using the RTO mechanism and an 
exponential backoff policy. It chooses the initial RTO value 
randomly, and later it uses a binary exponential backoff 
(BEB) mechanism for computing the RTO value. The 
random initial value could lead to unnecessary 
retransmissions and, thus, network congestion [12]. Also, 
the CoAP backoff mechanism often fails to utilize the 
network dynamics to the best of its traffic conditions. As 
Currently, the CoAP Simple Congestion Control/Advanced 
(CoCoA) [11] is the standard protocol for CoAP by IETF. 
CoCoA considers Round Trip Time (RTT) for estimating 
Retransmission Timeout (RTO) along with a Variable 
Backoff Factor (VBF) and aging mechanisms to provide 
flexibility and monitored adaptation suited to the dynamic 
nature of IoT networks. Each IoT application has different 
characteristics and behavior, as a single standard algorithm 
may be adequate to handle the congestion in the network.  

Recent studies [1], [2] show that CoCoA+ can perform 
better than basic CoAP in many scenarios but performs 
significantly poorly in bursty traffic environments in a large-
scale network. In [3], [14], the authors have highlighted the 
drawbacks of CoCoA+, based simulation evaluation. Many 
researchers have proposed different mechanisms to 
overcome the weaknesses of CoCoA+. Few researchers aim 
to improve the performance of CoAP in a bursty traffic 
environment by measuring the RTT precisely and 
monitoring network conditions to minimize spurious 
retransmission.  Few researchers use a rate-based 
mechanism [4], which utilizes the maximum bandwidth of 
the bottleneck link and ensures fairness. Existing protocols 
use fixed scaling factors for computations of the RTO, which 
might not be suitable for a wide range of IoT scenarios, and 
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thus lead to higher retransmissions. Dynamic scaling factors 
could estimate RTO to be large enough to minimize 
retransmissions. 

We propose a dynamic scaling factor for estimating 
RTT, RTTVAR, and RTO to overcome the fixed scaling 
values. The significant contribution of this work is an 
adaptive congestion control with a backoff algorithm named 
ACCB. ACCB estimates RTO using dynamic scaling factors 
for smoothed round trip time (RTT), RTT variation 
(RTTVAR), and RTO instead of fixed values. Also, ACCB 
has a dynamic backoff mechanism for retransmission. The 
proposed model is evaluated against CoAP, CoCoA+, and 
AdCoCoA. 
This paper is structured as follows: Section 2 summarizes 
the existing congestion control mechanisms for CoAP. 
Section 3 describes the design and working of the proposed 
protocol. Section 4 presents the evaluation scenarios and 
analyzes the Contiki OS Cooja [20] simulation results. The 
conclusion in Section 5.  
 

2. Literature survey 

 In [1] and [2], the authors have evaluated the performance 
of CoAP and CoCoA in environments varying from emulated 
Zigbee networks to large-scale IoT networks. In [5], CoCoA 
is considered in large-scale IoT networks in which GPRS is 
employed to connect IoT nodes. A. Betzler et al. compared 
CoCoA with congestion control protocols designed for TCP 
applications [2]. The authors reported that CoCoA performs 
similarly or better than TCP-based protocols. Similar 
interpretations are documented in [2]; the authors evaluated 
CoCoA with different traffic patterns. In [6], the authors 
proposed modified CoCoA with 4-State-Strong, which can 
distinguish loss due to lossy links and congestion. The 
reported results show better performance than CoCoA, but 
the loss rate is high. In [7], the authors proposed an enhanced 
version of CoCoA, named CoCoA-E. It uses the Eifel 
retransmission timer [15] for estimating RTO. The results 
show that CoCoA-E performs significantly better than 
CoCoA in the presence of lesser traffic fluctuations. In [5], 
the authors evaluate CoCoA-S (a variant of CoCoA), which 
considers only strong-RTO estimator, basic CoAP, CoCoA, 
and TCP-based protocols like Linux RTO [16], peaker-
hopper TCP RTO [17]. The results show that CoCoA 
performance is better than the other evaluated protocols with 
lower traffic rates. 

 In [8], the authors proposed an Enhanced version of 
CoCoA, which measures RTT accurately using a 
retransmission count field. The authors reported that the 
proposed protocol performs better than CoAP, CoCoA, and 
CoCoA-E. In [3], [14], the authors evaluated CoCoA+ with 
bursty traffic and reported its shortcomings of CoCoA+. 
CoCoA+ performs worst with bursty traffic; RTO and RTT 
are too close, which may result in spurious retransmissions. 
A novel approach called pCoCoA is designed to overcome 
the limitations of CoCoA+. pCoCoA measures RTT 

precisely using a timestamp and aims to reduce spurious 
retransmissions. The results show that pCoCoA minimizes 
unnecessary retransmissions without affecting the 
throughput and delay. However, some of the fixed values 
introduced in pCoCoA might not be suitable for many IoT 
scenarios. In [4], the authors propose a new rate-based 
congestion control mechanism for CoAP, named CoAP-R. 
pCoCoA and CoAP-R aim to improve the performance of 
CoAP in a bursty traffic environment. CoAP-R is designed 
to achieve maximum bandwidth from the bottleneck link 
capacity and allocate the network resources based on the 
max-min fairness. The results show that CoAP-R distributes 
the network resources equally amongst the senders and 
reduces the delay compared to CoAP and CoCoA. 

 In [9], the author proposes CoCoA++, a delay gradient-
based mechanism with a probability backoff factor. 
CoCoA++ is compared with CoCoA+ using a simulator and 
real testbed. The results show that CoCoA++ has low RTO 
values, reduces transmission delay, and increases 
transmission rate compared to CoCoA+ in different IoT 
scenarios. In [10], the authors propose a rate-based 
congestion control protocol for CoAP derived from TCP 
Bottleneck Bandwidth and Round-trip propagation time 
(BBR) [18], named BDP-CoAP.  BDP-CoAP design copes 
with lossy links and the short-term unfairness of channel 
access in IoT networks. The results show that BPD-CoAP 
significantly improves the fairness of data connections and 
reduces the number of retransmissions while achieving 
throughput comparable to CoAP and CoCoA+.  

 In [22], the author has used learning automata to design 
a congestion control protocol for CoAP. A group of tunable 
parameters is used to control congestion in the network and 
enhance the network performance. CCCLA performs better 
than CoAP CC, CoCoA, and TCP-Siam. In [23], the authors 
enhance CoCoA using a machine-learning mechanism to 
tune the RTO parameter values using node count, packet size, 
and PDR. mlCoCoA achieves higher throughput than CoAP 
CC and CoCoA. In [24], the author has designed three RTO 
estimators which help to determine the exact network status. 
CACC performs better than CoAP and CoCoA in static 
scenarios.   
 An improved adaptive CoAP [25] determines the RTO 
value using packet loss ratio and RTT. RTT-CoAP [26] has 
a novel approach to detecting congestion in the network 
using the growth of RTT variance coupled with thresholds 
on CoAP message losses. CoAP Eifel [27] is a modified 
version of CoAP which uses only strong RTT to estimate the 
RTO value. AdCoCoA [28] considers link quality, link delay, 
and RTT deviation to calculate the RTO value. CACC [29] 
considers strong, weak, and failed RTT to identify the exact 
network status and provide an adaptive congestion control 
mechanism. FASOR [30] determines whether packet loss is 
due to the wireless link environment or congestion by 
considering three unique features – self-adaptive 
retransmission timer backoff, slow RTO computation, and 
fast RTO computation mechanism. DCC-CoAP [31] has an 
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efficient way of predicting network congestion; it uses a 
combination of distance between nodes and round RTT 
measurements, which limits the losses of CoAP messages. 
 RCoAP [32] is a rate control-based scheme for CoAP 
designed for reliable bursty data transfer. It consists of four 
states – initial, normal, loss detection, and backoff. 
psoCoCoA [33] is a variation of CoCoA, which applies 
random and optimal parameter-driven simulation to 
optimize default CoAP parameters and update the fitness 
and velocity positions to adapt to the traffic conditions. 
 In this section, we summarized the existing protocols 
designed to improve the performance of CoAP. The 
following section discusses our adaptive congestion 
control's design and working mechanism with the backoff 
algorithm (ACCB) for CoAP. 

3. Adaptive Congestion Control with Backoff 
algorithm (ACCB) 

As discussed in section II, most existing congestion control 
protocols for CoAP use fixed scaling factors for the RTO 
estimator. These fixed factors might not be suitable in many 
IoT scenarios, for example, connected cars or self-driven 
cars. The algorithm considers the varying density (low to 
high) and mobility speed of vehicles (slow to fast) and 
adapts as per the characteristic of the application. Hence, 
dynamic scaling factors may help to improve the 
performance of CoAP for such applications. ACCB is an 
enhancement of AdCoCoA, which (i) estimates dynamic 
scaling factors using multiple network parameters instead of 
a single parameter and (ii) uses the Adaptive backoff (ABF) 
mechanism instead of the variable backoff (VBF) 
mechanism. AdCoCoA determines dynamic scaling factor 
using only RTT variance, whereas ACCB determines using 
RTT variance, retransmission ratio, and packet loss ratio.  
Figure 1 shows the overview of the ACCB mechanism for 
CoAP. ACCB measures RTT using a timestamp; hence only 
strong RTT contributes to RTO estimation. On sending the 
CON message, if the receiver is unknown, then the default 
CoAP mechanism is used for the first time. On estimating 
the first measured RTT, ACCB calculates Smoothed RTT, 
RTTVAR, and RTO, the same as AdCoCoA. ACCB uses 
dynamic scaling and smoothing factors for subsequent 
measured RTTs to calculate RTT, RTTVAR, and RTO 
values.  ACCB calculates dynamic scaling and smoothing 
characteristics for estimating RTT, RTTVAR, and RTO. 

 
Figure 1: An overview of the ACCB mechanism 

     To calculate RTT deviation, retransmission ratio, and 
packet loss ratio.  
RTT deviation = ((RTTm – RTTcurrent)/ RTTcurrent)        (eq 1) 
If the RTT deviation exceeds one, the RTT deviation value 
equals 0.9.   

 retransmission ratio  
   

   
  (eq 2) 

If the retransmission ratio is zero, the retransmission ratio 
value equals 0.1.   

packet loss ratio  
   

   
          (eq 3) 

If the packet loss ratio is zero, then the packet loss ratio 
value equals 0.1.   
   To calculate dynamic smoothing factors alpha and beta. 
alpha = ((RTT deviation * 0.5) + (retransmission ratio  * 
0.25) + (packet loss ratio  * 0.25))                              (eq 4) 
beta = alpha * 0.5 ;                                                      (eq 5) 
    To calculate smoothed RTT, RTTVAR, and RTO values. 
RTTcurrent = (1 - alpha) * RTTm + alpha * RTTcurrent      (eq 6) 
RTTVARcurrent = (1 - beta ) * RTTVARprevious + beta * | 
RTTm –  RTTcurrent|                                                      (eq 7) 
RTOcurrent = RTTcurrent + K  *   RTTVARcurrent                   (eq 8) 
Where K is the scaling factor. If the RTT deviation value 
exceeds one, K =6; else, K=4. 
RTOoverall = 0.5*RTOprevious + 0.5 * RTOcurrent              (eq 9) 

The Adaptive backoff factor (ABF) mechanism calculates 
the RTO value on retransmissions. If RTOoverall less than one 
second, RTOnew = RTOprevious + (1 + RTT deviation); else, 
RTOnew = RTOprevious + RTT deviation. 

In this section, we described the design and working of 
the ACCB algorithm. The following section discusses the 
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simulations used to validate ACCB against CoAP, CoCoA+, 
and AdCoCoA. 

 
4. Performance evaluation  

In this section, we evaluate the performance of ACCB with 
CoAP, CoCoA+, and AdCoCoA through simulations. This 
section includes the simulator's configuration, the traffic 
scenario, the network topologies, and the performance 
metrics used to carry out the performance evaluations.  

4.1 Simulation setup 
We use the Cooja simulator [20], a simulation platform 
included in Contiki 3.0 toolset [20], that allows emulating 
off-the-shelf wireless sensor node hardware. At the physical 
(PHY) and MAC layers, the nodes implement IEEE 802.15.4, 
using a transmission rate of 250 kbps in the 2.4 GHz radio 
band. The Cooja simulator and Zolerita Z1 motes are used for 
clients and servers. Z1 motes have 92KB of ROM, enabling 
us to code applications and implement congestion control 
mechanisms. T-mote Sky motes are used to configure the 
border router because we use IPv6 Routing Protocol for Low-
Power and Lossy Networks [19] in storing mode, which 
requires a larger RAM capacity provided by Sky motes. The 
relevant simulation parameters are summarized in Table 2.  

 
Table 1. Simulation parameters 

Operating system Contiki 3.0 
Simulator Cooja 
Area  Linear – varies from 20 m * 10 m to 

500 m * 20 m, Random - ranges from 
50m * 50 m to 400 m * 400 m 

Radio Medium  Unit Disk Graph Medium (UDGM) - 
Distance loss 

Radio duty cycling NullRDC 
Mote type T-mote sky and Zolerita Z1 
Number of nodes 40, 80, 120, and 160 
Topologies  Linear (chain) and Random 
Node transmission 
range 

10 m 

Node interference range 20 m 
Interference level  10%, 25%, 35%, 50% 
Traffic type Constant bit rate (periodic) 
Speed of nodes Zero km/hr, 15- 34 km/hr, 35- 60 

km/hr, 61- 80 km/hr, 81- 120 km/hr 
Packet size 100 bytes 
Retransmission limit 4 
Simulation time 300 seconds 

 
Figure 2 shows the topologies used, nodeID 1 represents 

the RPL border router, nodeID 2 represents the CoAP 
server, and the rest are CoAP clients. After the RPL setup, 
the clients periodically send messages targeted at the 
servers. Every scenario is run 15 times with a different 
random seed with a simulation time of 300 seconds. The 
simulation results are plotted against the number of nodes, 
interference level, and speed of nodes using a box-and-
whisker plot diagram. To determine the difference among 
the protocols, we used Tukey's Honestly Significance test 

with a confidence level of 90%, evaluated using R 
programming [21]. 

 
(a) Linear topology 

 
(b) Random topology 

Figure 2: Topologies (a) Linear (b) Random 
The metrics used in the performance evaluation are i) the 

goodput, measured as the total amount of data successfully 
received per unit of time; ii) the packet delivery ratio, 
computed as the ratio of the total number of received CoAP 
messages over the number of sent CoAP messages in a given 
time interval; iii) the retransmission rate, evaluated as the 
percentage of retransmitted packets over the total number of 
packets sent by the CoAP clients; and iv) the packet sending 
rate at the application level, the total number of packets sent 
by the CoAP clients in a given time interval. 
 
Linear scenario:  
 Figure 3 shows the comparative goodput of CoAP, 
CoCoA+, AdCoCoA, and ACCB congestion control. The 
goodput achieved in the linear scenario with ACCB is 
statistically higher by approx. 49.5%, 436.5%, 312.7% than 
CoAP, CoCoA+, and AdCoCoA as p-value is (0 < 0.10) 
respectively. Figure 3 (a) shows goodput against the 
protocols for the number of nodes 40, 80, 120, and 160. The 
goodput of ACCB is significantly higher by approx. 41%, 
417.1%, 221.1% than CoAP, CoCoA+, and AdCoCoA 
respectively. As the number of nodes increases, the goodput 
also increases. Figure 3 (b) shows goodput against the 
protocols for interference level (IF level) 10%, 25%, 35%, 
50%. The goodput of ACCB is significantly higher by 
approx. 45.6%, 441.4%, 245.4% than CoAP, CoCoA+, and 
AdCoCoA respectively. As the interference level increases, 
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the goodput of decreases. Figure 3 (c) shows goodput against 
the protocols for speed of nodes Zero km/hr, 15- 34 km/hr, 35- 60 

km/hr, 61- 80 km/hr, 81- 120 km/hr.  The goodput of ACCB is 
significantly higher by approx. 45.6%, 410.9%, 205.6% than 
CoAP, CoCoA+, and AdCoCoA respectively. As the speed 
of nodes increases, the goodput decreases.  
 Figure 4 shows the comparative packet delivery ratio of 
CoAP, CoCoA+, AdCoCoA, and ACCB congestion control. 
The packet delivery ratio achieved in the linear scenario with 
ACCB is statistically higher by approx. 10.12%, 56.05%, 
28.3% than CoAP, CoCoA+, and AdCoCoA as p-value is 
1.7E-11 < 0.10) respectively. Figure 4 (a) shows the packet 
delivery ratio against the protocols for the number of nodes 
40, 80, 120, and 160. For 40 nodes, the goodput of ACCB is 
significantly higher by approx. 9.2%, 53.3%, 26.9% than 
CoAP, CoCoA+, and AdCoCoA respectively. Figure 4 (b) 
shows packet delivery ratio against the protocols for 

interference level (IF level) 10%, 25%, 35%, 50%. The 
goodput of ACCB is statistically higher by approx. 10.2%, 
39.5%, 20.4% than CoAP, CoCoA+, and AdCoCoA as 
respectively. Figure 4 (c) shows packet delivery ratio against 
the protocols for speed of nodes Zero km/hr, 15- 34 km/hr, 35- 60 

km/hr, 61- 80 km/hr, 81- 120 km/hr.  The packet delivery ratio of 
ACCB is statistically higher by approx. 6.4%, 41.3%, 23.1% 
than CoAP, CoCoA+, and AdCoCoA as respectively.  
  Figure 5 shows the comparative retransmission rate of 
CoAP, CoCoA+, AdCoCoA, and ACCB congestion control. 
The retransmission rate achieved in the linear scenario with 
ACCB is the same as CoAP, CoCoA+, and AdCoCoA, 
respectively.  
 

 
 

   
(a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes 
Figure 3: Goodput v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes 

  
(a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes 

Figure 4: Packet delivery ratio v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes 
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(a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes 

Figure 5: Retransmission rate v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes 

 
(a)Varying number of nod (b)Varying interference level (c) Varying speed of nodes 

Figure 6: Packet sending rate v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying the speed of nodes 

Figure 5 (a), (b), and (c) show the retransmission rate against 
protocols by varying the number of nodes, interference level, 
and speed of nodes. The retransmission rate is directly 
proportional to the number of nodes. As the interference 
level increases, the retransmission rate also increases. As the 
speed of nodes increases, the retransmission rate also 
increases. 
 Figure 6 shows the comparative packet sending rate of 
CoAP, CoCoA+, AdCoCoA, and ACCB congestion control. 
The packet sending rate achieved in the linear scenario with 
ACCB is statistically higher by approx. 37.7%, 265%, 175.3% 
than CoAP, CoCoA+, and AdCoCoA as p-value is (0 < 0.10) 
respectively. Figure 6 (a) shows the packet sending rate 
against the protocols for the number of nodes 40, 80, 120, 
and 160. The packet-sending rate of ACCB is significantly 
higher by approx. 39.9%, 255%, 136% than CoAP, CoCoA+, 
and AdCoCoA respectively. Figure 6 (b) shows packet 
sending rate against the protocols for interference level (IF 
level) 10%, 25%, 35%, 50%. The packet-sending rate of 

ACCB is significantly higher by approx. 37.5%, 272.3%, 
180.7% than CoAP, CoCoA+, and AdCoCoA respectively. 
Figure 6 (c) shows packet sending rate against the protocols 
for speed of nodes Zero km/hr, 15- 34 km/hr, 35- 60 km/hr, 61- 80 

km/hr, 81- 120 km/hr.  The packet-sending rate of ACCB is 
significantly higher by approx. 41.7%, 260.4%, 165.9% than 
CoAP, CoCoA+, and AdCoCoA respectively. 
 ACCB estimates RTO per RTT measured and considers 
the multiple network status parameters. The dynamic 
smoothing factor scales the RTO as per the change fraction 
compared to the current RTT, ensuring the maximum CoAP 
message is received. Whereas AdCoCoA considers single 
network status parameters to calculate dynamic scaling 
factors. CoCoA uses fixed scaling factors for calculating 
RTT, RTTVAR, and RTO. CoAP does not consider any 
network status parameter and doubles the RTO value on 
retransmission. 
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Random scenario: 
Figure 7 shows the comparative goodput of CoAP, 

CoCoA+, AdCoCoA, and ACCB congestion control. The 
goodput achieved in the random scenario with ACCB is 
statistically higher by approx. 60.5%, 482%, 202.1% than 
CoAP, CoCoA+, and AdCoCoA as p-value is (0 < 0.10) 
respectively. Figure 7 (a) shows goodput against the 
protocols for the number of nodes 40, 80, 120, and 160. The 
goodput of ACCB is significantly higher by approx. 63.8%, 
482.4%, 211.7% than CoAP, CoCoA+, and AdCoCoA 
respectively. Figure 7 (b) shows goodput against the 
protocols for interference level (IF level) 10%, 25%, 35%, 
50%. The goodput of ACCB is significantly higher by approx. 
61.6%, 500.2%, 228% than CoAP, CoCoA+, and AdCoCoA 
respectively. Figure 7 (c) shows goodput against the 
protocols for speed of nodes Zero km/hr, 15- 34 km/hr, 35- 
60 km/hr, 61- 80 km/hr, 81- 120 km/hr.  The goodput of 
ACCB is significantly higher by approx. 65.5%, 552.2%, 218% 
than CoAP, CoCoA+, and AdCoCoA respectively.  

Figure 8 shows the comparative packet delivery ratio of 
CoAP, CoCoA+, AdCoCoA, and ACCB congestion control. 
The packet delivery ratio achieved in the random scenario 
with ACCB is significantly higher by approx. 7.6%, 60.6%, 
26% than CoAP, CoCoA+, and AdCoCoA p-value is (2.5E-
11 < 0.10) respectively. Figure 8 (a) shows the packet 

delivery ratio against the protocols for the number of nodes 
40, 80, 120, and 160. The goodput of ACCB is significantly 
higher by approx. 7.7%, 60.6%, 25.3% than CoAP, CoCoA+, 
and AdCoCoA respectively. Figure 8 (b) shows packet 
delivery ratio against the protocols for interference level (IF 
level) 10%, 25%, 35%, 50%. The goodput of ACCB is 
significantly higher by approx. 7.8%, 64.8%, 30% than 
CoAP, CoCoA+, and AdCoCoA respectively. Figure 8 (c) 
shows packet delivery ratio against the protocols for speed of 
nodes Zero km/hr, 15- 34 km/hr, 35- 60 km/hr, 61- 80 km/hr, 
81- 120 km/hr.  The packet delivery ratio of ACCB is 
significantly higher by approx. 8.1%, 59%, 29.1% than 
CoAP, CoCoA+, and AdCoCoA respectively.  

Figure 9 shows the comparative retransmission rate of 
CoAP, CoCoA+, AdCoCoA, and ACCB congestion control. 
The retransmission rate achieved in the random scenario with 
ACCB is the same as CoAP, CoCoA+, and AdCoCoA, 
respectively. Figure 9 (a), (b), and (c) show the 
retransmission rate against protocols by varying the number 
of nodes, interference level, and speed of nodes. As the 
number of nodes increases, the retransmission rate also 
increases.  

 

  

   

(a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes 

Figure 7: Goodput v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes 
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(a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes 

Figure 8: Packet delivery ratio v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes 

   

(a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes 

Figure 9: Retransmission rate v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes 

   

(a)Varying number of nodes (b)Varying interference level (c) Varying speed of nodes 

Figure 10: Packet sending rate v/s protocols (a)Varying number of nodes (b)Varying interference level (c) Varying the speed of nodes 
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As the interference level increases, the retransmission 
rate also increases. As the speed of nodes increases, the 
retransmission rate also increases. 

Figure 10 shows the comparative packet sending rate of 
CoAP, CoCoA+, AdCoCoA, and ACCB congestion control. 
The packet sending rate achieved in the random scenario with 
ACCB is statistically higher by approx. 40.9%, 284%, 146.4% 
than CoAP, CoCoA+, and AdCoCoA as p-value is (0 < 0.10) 
respectively. Figure 10(a) shows goodput against the 
protocols for the number of nodes 40, 80, 120, and 160. The 
goodput of ACCB is significantly higher by approx. 42.1%, 
277.4%, 126.9% than CoAP, CoCoA+, and AdCoCoA 
respectively. Figure 10(b) shows goodput against the 
protocols for interference level (IF level) 10%, 25%, 35%, 
50%. The goodput of ACCB is statistically higher by approx. 
41.7%, 286.1%, 150.1% than CoAP, CoCoA+, and 
AdCoCoA respectively. Figure 10(c) shows goodput against 
the protocols for speed of nodes Zero km/hr, 15- 34 km/hr, 
35- 60 km/hr, 61- 80 km/hr, 81- 120 km/hr.  The goodput of 
ACCB is statistically higher by approx. 42.2%, 285.4%, 
148.8% than CoAP, CoCoA+, and AdCoCoA respectively.  

ACCB estimates dynamic smoothing factors per the 
change determined by RTT deviation, retransmission ratio, 
and packet loss ratio. These dynamic scaling factors help 
estimate RTO large enough, ensuring maximum CoAP 
message to be received. CoCoA uses fixed scaling factors for 
calculating RTT, RTTVAR, and RTO. Whereas AdCoCoA 
considers a single network status parameter to calculate 
dynamic scaling factors. CoAP does not consider any 
network status parameter and doubles the RTO value on 
retransmission. 

In this section, we describe the simulation setup, 
evaluation parameters, and simulation results. 
 

5. Conclusion 
 

In recent studies, most existing protocols use fixed 
scaling factors for estimating RTO. This paper proposes an 
Adaptive congestion control with a backoff algorithm 
(ACCB) for CoAP in IoT networks. ACCB has a dynamic-
scaling-factor-based mechanism for RTT, RTTVAR, and 
RTO estimation. ACCB adaptively computes the RTO 
depending on the changes in the network status. ACCB 
considers RTT deviation, retransmission ratio, and packet 
loss ratio to calculate dynamic scaling and smoothing factors. 
Adaptive factors and ABF mechanisms would help improve 
performance and minimize retransmissions.  Our simulation 
results show that ACCB performs better than CoAP, 
CoCoA+, and AdCoCoa in linear and random scenarios. 
ACCB has significantly higher goodput 49.5%, 436.5%, and 
312.7% compare to CoAP, CoCoA+ and AdCoCoA 
respectively in linear scenario. ACCB has significantly 

higher packet delivery ratio 10.1%, 56%, 23.3% compare to 
CoAP, CoCoA+ and AdCoCoA respectively in linear 
scenario. ACCB has significantly higher packet sending rate 
37.7%, 265%, and 175.3% compare to CoAP, CoCoA+ and 
AdCoCoA respectively in linear scenario. The results show 
ACCB has significantly higher goodput (60.5%, 
482%,202.1%), packet delivery ratio (7.6%, 60.6%, 26%), 
and packet sending rate (40.9%, 284%, 146.45%), compared 
to CoAP, CoCoA+ and AdCoCoA respectively in random 
walk scenario. ACCB has similar retransmission rate 
compared to CoAP, CoCoA+ and AdCoCoA in both the 
scenarios. 

The estimated RTO is large enough; packets are received 
in the first or minimum attempts. ACCB helps increase the 
packet delivery ratio and sending rate and achieve higher 
goodput. ACCB performs better because it determines 
dynamic scaling factors based on the RTT deviation, 
retransmission ratio, and packet loss ratio. Due to dynamic 
scaling factors, packet loss and retransmission attempts are 
reduced. For future research, we plan to extend our work to 
validate the proposed algorithm by varying packet size, the 
density of nodes, traffic type,  and inter-arrival time.  
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