• Title/Summary/Keyword: exponential functions

Search Result 363, Processing Time 0.029 seconds

One-dimensional consolidation with asymmetrical exponential drainage boundary

  • Mei, Guo-Xiong;Lok, Thomas M.H.;Xia, Jun;Wu, Sheng Shen
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.47-63
    • /
    • 2014
  • In this paper, asymmetric drainage boundaries modeled by exponential functions which can simulate intermediate drainage from pervious to impervious boundary is proposed for the one-dimensional consolidation problem, and the solution for the new boundary conditions was derived. The new boundary conditions satisfy the initial and the steady state conditions, and the solution for the new boundary conditions can be degraded to the conventional solution by Terzaghi. Convergence study on the infinite series solution showed that only one term in the series is needed to meet the precision requirement for larger degree of consolidation, and that more terms in the series for smaller degree of consolidation. Comparisons between the present solution with those by Terzaghi and Gray are also provided.

Noninformative priors for product of exponential means

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.763-772
    • /
    • 2015
  • In this paper, we develop the noninformative priors for the product of different powers of k means in the exponential distribution. We developed the first and second order matching priors. It turns out that the second order matching prior matches the alternative coverage probabilities, and is the highest posterior density matching prior. Also we revealed that the derived reference prior is the second order matching prior, and Jeffreys' prior and reference prior are the same. We showed that the proposed reference prior matches very well the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

An Exponential Representation Form for Fuzzy Logic

  • Shen, Zuliang;Ding, Liya
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1281-1284
    • /
    • 1993
  • By the exponential representation form (EF) for fuzzy logic, any fuzzy value a (in fuzzy valued logic or fuzzy linguistic valued logic) can be represented as Bc, where B is called the truth base and C the confidence exponent. This paper will propose the basic concepts of this form and discuss its interesting properties. By using a different truth base, the exponential form can be used to represent the positive and the negative logic in fuzzy valued logic as well as in fuzzy linguistic valued logic. Some Simple application examples of EF for approximate reasoning are also illustrated in this paper.

  • PDF

SoftMax Computation in CNN Using Input Maximum Value (CNN에서 입력 최댓값을 이용한 SoftMax 연산 기법)

  • Kang, Hyeong-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.325-328
    • /
    • 2022
  • A convolutional neural network(CNN) is widely used in the computer vision tasks, but its computing power requirement needs a design of a special circuit. Most of the computations in a CNN can be implemented efficiently in a digital circuit, but the SoftMax layer has operations unsuitable for circuit implementation, which are exponential and logarithmic functions. This paper proposes a new method to integrate the exponential and logarithmic tables of the conventional circuits into a single table. The proposed structure accesses a look-up table (LUT) only with a few maximum values, and the LUT has the result value directly. Our proposed method significantly reduces the space complexity of the SoftMax layer circuit implementation. But our resulting circuit is comparable to the original baseline with small degradation in precision.

Further Results on Characteristic Functions Without Contour Integration

  • Song, Dae-Kun;Kang, Seul-Ki;Kim, Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.5
    • /
    • pp.461-469
    • /
    • 2014
  • Characteristic functions play an important role in probability and statistics; however, a rigorous derivation of these functions requires contour integration, which is unfamiliar to most statistics students. Without resorting to contour integration, Datta and Ghosh (2007) derived the characteristic functions of normal, Cauchy, and double exponential distributions. Here, we derive the characteristic functions of t, truncated normal, skew-normal, and skew-t distributions. The characteristic functions of normal, cauchy distributions are obtained as a byproduct. The derivations are straightforward and can be presented in statistics masters theory classes.

Improvement of Analytical Probabilistic Model for Urban Storm Water Simulation using 3-parameter Mixed Exponential Probability Density Function (3변수 혼합 지수 확률밀도함수를 이용한 도시지역 강우유출수의 해석적 확률모형 개선)

  • Choi, Daegyu;Jo, Deok Jun;Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.345-353
    • /
    • 2008
  • In order to design storage-based non-point source management facilities, the aspect of statistical features of the entire precipitation time series should be considered since non-point source pollutions are delivered by continuous rainfall runoffs. The 3-parameter mixed exponential probability density function instead of traditional single-parameter exponential probability density function is applied to represent the probabilistic features of long-term precipitation time series and model urban stormwater runoff. Finally, probability density functions of water quality control basin overflow are derived under two extreme intial conditions. The 31-year continuous precipitation time series recorded in Busan are analyzed to show that the 3-parameter mixed exponential probability density function gives better resolution.

ON THE EXPONENTIAL APPROXIMATIONS IN EVALUATION OF FUNCTIONS

  • Yu, Dong-Won;Lee, Hyoung
    • Journal of applied mathematics & informatics
    • /
    • v.2 no.2
    • /
    • pp.13-20
    • /
    • 1995
  • The goal of this paper is to show that the linear approxi-mation in evaluation of functions may be effectively replaced by the ex-ponential approximation formulas obtained by numerical quadratures and in the instance the relative errors can be estimated without know-ing the true values.

LINEAR EXTENSIONS OF DIAMOND POSETS

  • Ju, Hyeong-Kwan;Seo, Seunghyun
    • Honam Mathematical Journal
    • /
    • v.41 no.4
    • /
    • pp.863-870
    • /
    • 2019
  • In this paper, we obtain the enumeration results on the number of linear extensions of diamond posets. We find the recurrence relations and exponential generating functions for the number of linear extensions of diamond posets. We also get some results for the volume of graph polytope associated with bipartite graphs which are underlying graphs of diamond posets.

(p, q)-LAPLACE TRANSFORM

  • KIM, YOUNG ROK;RYOO, CHEON SEOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.5_6
    • /
    • pp.505-519
    • /
    • 2018
  • In this paper we define a (p, q)-Laplace transform. By using this definition, we obtain many properties including the linearity, scaling, translation, transform of derivatives, derivative of transforms, transform of integrals and so on. Finally, we solve the differential equation using the (p, q)-Laplace transform.

A study on the Time Series Prediction Using the Support Vector Machine (보조벡터 머신을 이용한 시계열 예측에 관한 연구)

  • 강환일;정요원;송영기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.315-315
    • /
    • 2000
  • In this paper, we perform the time series prediction using the SVM(Support Vector Machine). We make use of two different loss functions and two different kernel functions; i) Quadratic and $\varepsilon$-insensitive loss function are used; ii) GRBF(Gaussian Radial Basis Function) and ERBF(Exponential Radial Basis Function) are used. Mackey-Glass time series are used for prediction. For both cases, we compare the results by the SVM to those by ANN(Artificial Neural Network) and show the better performance by SVM than that by ANN.