• Title/Summary/Keyword: explosion risk assessment

Search Result 117, Processing Time 0.029 seconds

Derivation of Cause Variables necessary for Electrostatic Fire/Explosion Risk Assessment and Accident Investigation (정전기 화재·폭발 위험성평가 및 사고조사에 필요한 발생원인 변수 도출)

  • Junghwan Byeon;Hyeongon Park
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.9-21
    • /
    • 2024
  • Static-electricity-induced fires and explosions persistently occur every year, averaging approximately 80 and 20 cases annually according to fire statistics provided by the National Fire Agency and industrial accident statistics provided by the Ministry of Employment and Labor, respectively. Despite the relatively low probabilities of these accidents, their potential risks are high. Consequently, effective risk assessment methodologies and accident investigation strategies are essential for efficiently managing static-electricity hazards in fire- and explosion-prone areas. Accordingly, this study aimed to identify the causal variables essential for accident investigations, thereby facilitating risk assessments and the implementation of effective recurrence prevention measures to mitigate static-electricity hazards in fire-and explosion-prone regions. To this end, industrial accident statistics recorded over the past decade (2012 to 2021) by the Ministry of Employment and Labor were analyzed to identify major fire and explosion incidents and related industrial accidents wherein static electricity was identified as a potential ignition source. Subsequently, relevant investigation reports (63 cases) were thoroughly analyzed. Based on the results of this analysis, existing electrostatic fire and explosion risk assessment techniques were refined and augmented. Moreover, factors essential for investigating electrostatic fire and explosion disasters were delineated, and the primary causal variables necessary for effective risk assessments and scientific investigations were derived.

A Research on the Verification Test Procedure for Quantitative Explosion Risk Assessment and Management of Offshore Installations (해양플랜트 폭발사고 위험도 평가/관리를 위한 실증시험기법에 관한 연구)

  • Kim, Bong Ju;Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.215-221
    • /
    • 2018
  • The structural design of offshore installations against explosions has been required to protect vital areas (e.g. control room, worker's area etc.) and minimize the damage from explosion accidents. Because the explosion accident will not only result in significant casualties and economic losses, but also cause serious pollution and damage to surrounding environment and coastal marine ecosystems. Over the past two decades, an incredible efforts was made to develop reliable methods to reduce and manage the explosion risk. Among the methods Quantitative Risk Assessment and Management (QRA&M) is the one of cutting-edge technologies. The explosion risk can be quantitatively assessed by the product of explosion frequency based on probability calculation and consequence analyzed using computer simulations, namely Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA). However to obtain reliable consequence analysis results by CFD and FEA, uncertainties associate with modeling and simulation are needed to be identified and validated by comparison with experimental data. Therefore, large-scaled explosion test procedure is developed in this study. And developed test procedure can be helpful to obtain precious test data for the validation of consequence analysis using computer simulations, and subsequently allow better assessment and management of explosion risks.

Fire and Explosion Analysis for Quantitative Risk Assessment on LNG Test Plant (LNG 시험 플랜트의 정량적 위해도 평가를 위한 화재 및 폭발사고 해석)

  • Han, Yong Shik;Kim, Myungbae;Do, Kyu Hyung;Kim, Tae Hoon;Choi, Byungil
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Fire and explosion analysis are performed for the quantitative risk assessment on the LNG test plant. From the analysis for a case of fire due to large leakage of LNG from the tank, it is obtained that loss of lives can be occurred within the radius of 60 m from the fire origin. Specially, wind can extend the extent of damage. Because the LNG test plant is not enclosed, the explosion overpressure is less than 6 kPa and the explosion has little effect on the integrity of the LNG test plant.

Development of Fire and Explosion Index Estimation Program for Risk Assessment in Chemical Processes (화학공정의 위험성 평가를 위한 화재 폭발 지수 산정 프로그램의 개발)

  • 김기수;백종배;고재욱;노삼규
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.2
    • /
    • pp.58-63
    • /
    • 1993
  • Recently, a large amount of flammable or explosive materials have been handled or stored in chemical industries. H the equipments fail or the materials release in consequence of operation errors, fire and explosion could occur to them. Thus, risk assessment using quantification of risks is very important when design of processes and modifications of installed processes are performed. The purpose of this study is to develop the program for fire and explosion index in order to quantify the expected damage of fire and explosion incidents in chemical plants, to identify equipment that would be likely to contribute to the creation or escalation of an incident, to comunicate the potential fire and explosion risk to management and to account of damage cost.

  • PDF

A Study of Explosion Risk Assessment for Designation of Dangerous Goods Transshipment Pier at Ulsan Port (울산항 위험물 환적부두 지정을 위한 폭발 위험성 평가에 관한 연구)

  • Kang, Min-Kyoon;Lee, Yun-Sok;Ahn, Young-Joong
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.109-116
    • /
    • 2021
  • The explosion of a chemical tanker ship during cargo transshipment via double-banking at Ulsan Port, resulted in major damage including fires involving nearby ships. As a follow-up measure to prevent the recurrence of similar accidents, the 'Safety Management of Dangerous Goods in Port' was established, and the designation of a transshipment pier for dangerous goods is required given the risk of explosion and the impact on major facilities in the port. This study evaluated the Fire & Explosion Index of major transshipment cargoes in Ulsan Port to design a transshipment pier based on the Explosion Risk Assessment. Based on the results of Fire & Explosion Index evaluation of styrene monomer and benzene, severe explosion risk was confirmed, and the exposure radius was calculated. Based on the results of the exposure radius, the risk range for each major pier was calculated, and 12 terminals were proposed as transshipment pier candidates considering port facilities, surrounding dangerous facilities, and residential aspects. Since the results of the study suggest transshipment piers based on the risk radius alone, maritime traffic safety, pier and mooring facilities, safety facilities and accessibility for emergency response should be considered comprehensively to designate actual transshipment piers.

Risk Assessment of Explosion of Mixed Dust Generated in Semiconductor Manufacturing (반도체 공정에서 발생하는 혼합분진의 폭발 위험성평가)

  • Park, Chang-Sup;Kim, Chan-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.474-478
    • /
    • 2018
  • The use of metals such as aluminum and titanium and the related industrial facilities have been continuously increasing to meet the requirements of the improvement of high-tech products due to the development of industry, and explosion of metal dust. Semiconductor process Metal dust is essential, but research is insufficient. The purpose of this study is to identify risk by analyzing the quantitative risk such as maximum explosion pressure and minimum explosion concentration applied international test standard in order to select the semiconductor process facilities handling dust and to predict possible risk of accidents.

The Safety Assessment for Ventilation Facilities of Underground Power Plant (지하 발전소 환기설비에 대한 안전성 평가)

  • Ko, Won-Kyoung;Kang, Seung Kyu;Jeong, Young-Dae;Kim, Young Gu
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.331-332
    • /
    • 2014
  • Underground power plant is required the strict safety management and safety assessment. Because it is the high risk of explosion by characteristic of enclosed space. In case gas leak of enclosed space, the ventilation facilities is very important in order to prevent explosion by the maintain less than the LEL(lower explosive limit). Thus, Through a safety assessment of ventilation volume is to reduce the risk for ventilation facilities in Underground power plant.

  • PDF

A Study on the Risk Assessment Technique of the Underground Space -Focused on Prevention Policy of Fire and Explosion- (지하공간의 위험성 평가수법에 관한 연구 -지하가 화재, 폭발 방재 대책 중심으로-)

  • 박종근;노삼규
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.64-70
    • /
    • 2001
  • This study suggests fire, explosion safety assessment items and risk assessment technique for underground shopping malls by extracting dangerous elements in the management stage through examination of related accidents, documents and present conditions. This will also suggest importance of seven items to be key indices for a counterplan by classifying characteristics and trends of the large scale, depth and complexity of underground shopping malls.

  • PDF

Risk Assessment of High Pressure HCNG Refueling Station Explosion by Numerical Simulation (시내버스용 HCNG 고압가스 충전소의 폭발 위험성 해석)

  • Kang, Seung-Kyu;Kim, Young-Gu;Choi, Seul-Ki;Kwon, Jeong-Rak
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.113-113
    • /
    • 2014
  • This study has been conducted for evaluation of qualitative/quantitative risk of HCNG filling station. In case of fire explosion occurred because of hydrogen, CNG, and HCNG leaking on same conditions, maximum overpressure was measured as 30kPa for hydrogen, 3.5kPa for HCNG, and 0.4kPa for CNG. The overpressure of HCNG was measured 7.75 times higher than that of CNG, but it was only 11.7% compared with hydrogen. When the explosion was occurred, in case of hydrogen, the measured influential distance of overpressure was 59m and radiant heat was 75m. In case of CNG, influential distance of overpressure was 89m and radiant heat was 144m would be estimated. In case of 30% HCNG that was blended with hydrogen and CNG, influential distance of overpressure was 81m and radiant heat was 130m were measured. As the explosion occurred with the same sized container that had 350bar for hydrogen and 250bar of CNG and HCNG, the damage distance that explosive overpressure and radiant heat influenced CNG was seen as the highest. HCNG that was placed between CNG and hydrogen tended to be seen as more similar with CNG.

  • PDF

3D Terrain Model Application for Explosion Assessment

  • Kim, Hyung-Seok;Chang, Eun-Mi;Kim, In-Won
    • 한국지역지리학회:학술대회
    • /
    • 2009.08a
    • /
    • pp.108-115
    • /
    • 2009
  • An increase in oil and gas plants caused by development of process industry have brought into the increase in use of flammable and toxic materials in the complex process under high temperature and pressure. There is always possibility of fire and explosion of dangerous chemicals, which exist as raw materials, intermediates, and finished goods whether used or stored in the industrial plants. Since there is the need of efforts on disaster damage reduction or mitigation process, we have been conducting a research to relate explosion model on the background of real 3D terrain model. By predicting the extent of damage caused by recent disasters, we will be able to improve efficiency of recovery and, sure, to take preventive measure and emergency counterplan in response to unprepared disaster. For disaster damage prediction, it is general to conduct quantitative risk assessment, using engineering model for environmentaldescription of the target area. There are different engineering models, according to type of disaster, to be used for industry disaster such as UVCE (Unconfined Vapor Cloud Explosion), BLEVE (Boiling Liquid Evaporation Vapor Explosion), Fireball and so on, among them.we estimate explosion damage through UVCE model which is used in the event of explosion of high frequency and severe damage. When flammable gas in a tank is released to the air, firing it brings about explosion, then we can assess the effect of explosion. As 3D terrain information data is utilized to predict and estimate the extent of damage for each human and material. 3D terrain data with synthetic environment (SEDRIS) gives us more accurate damage prediction for industrial disaster and this research will show appropriate prediction results.

  • PDF