• Title/Summary/Keyword: explicit formula

Search Result 138, Processing Time 0.021 seconds

YOUNG TABLEAUX, CANONICAL BASES, AND THE GINDIKIN-KARPELEVICH FORMULA

  • Lee, Kyu-Hwan;Salisbury, Ben
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.289-309
    • /
    • 2014
  • A combinatorial description of the crystal $\mathcal{B}({\infty})$ for finite-dimensional simple Lie algebras in terms of certain Young tableaux was developed by J. Hong and H. Lee. We establish an explicit bijection between these Young tableaux and canonical bases indexed by Lusztig's parametrization, and obtain a combinatorial rule for expressing the Gindikin-Karpelevich formula as a sum over the set of Young tableaux.

AVERAGE VALUES ON THE JACOBIAN VARIETY OF A HYPERELLIPTIC CURVE

  • Chung, Jiman;Im, Bo-Hae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.333-349
    • /
    • 2019
  • We give explicitly an average value formula under the multiplication-by-2 map for the x-coordinates of the 2-division points D on the Jacobian variety J(C) of a hyperelliptic curve C with genus g if $2D{\equiv}2P-2{\infty}$ (mod Pic(C)) for $P=(x_P,y_P){\in}C$ with $y_P{\neq}0$. Moreover, if g = 2, we give a more explicit formula for D such that $2D{\equiv}P-{\infty}$ (mod Pic(C)).

A GENERALIZATION OF THE LAGUERRE POLYNOMIALS

  • Ali, Asad
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.299-312
    • /
    • 2021
  • The main aim of this paper is to introduce and study the generalized Laguerre polynomials and prove that these polynomials are characterized by the generalized hypergeometric function. Also we investigate some properties and formulas for these polynomials such as explicit representations, generating functions, recurrence relations, differential equation, Rodrigues formula, and orthogonality.

Explicit time integration algorithm for fully flexible cell simulation (외연적 적분 기법을 적용한 Fully Flexible Cell 분자 동영학 시뮬레이션)

  • Park Shi-Dong;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.389-394
    • /
    • 2006
  • Fully flexible cell preserves Hamiltonian in structure, so the symplectic time integrator is applied to the equations of motion. Primarily, generalized leapfrog time integration (GLF) is applicable, but the equations of motion by GLF have some of implicit formulas. The implicit formulas give rise to a complicate calculation for coding and need an iteration process. In this paper, the time integration formulas are obtained for the fully flexible cell molecular dynamics simulation by using the splitting time integration. It separates flexible cell Hamiltonian into terms corresponding to each of Hamiltonian term, so the simple and completely explicit recursion formula was obtained. The explicit formulas are easy to implementation for coding and may be reduced the integration time because they are not need iteration process. We are going to compare the resulting splitting time integration with the implicit generalized leapfrog time integration.

  • PDF

PRAFFIAN AND YOUNG TABLEAUX

  • Choi, Seul-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.789-796
    • /
    • 1997
  • We consider a Pfaffian and its combinatorial model. We give a bijection between Pfaffian and the generating function of weights of generalized Young tableaux by this combinatorial model, and we find an explicit formula for the Pfaffian by this bijection.

  • PDF

The Busy Period of the M/M/1 Queue with Bounded Workload

  • Bae, Jong-Ho
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.273-277
    • /
    • 2002
  • In this paper, with martingale argument we derive the explicit formula for the Laplace transform of the busy period of M/M/1 queue with bounded workload which is also called finite dam. Much simpler derivation than appeared in former literature provided.

  • PDF