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A GENERALIZATION OF THE LAGUERRE POLYNOMIALS

Asad Ali

Abstract. The main aim of this paper is to introduce and study the

generalized Laguerre polynomials and prove that these polynomials are

characterized by the generalized hypergeometric function. Also we in-
vestigate some properties and formulas for these polynomials such as

explicit representations, generating functions, recurrence relations, dif-
ferential equation, Rodrigues formula, and orthogonality.

1. Introduction and preliminaries

Laguerre polynomials are among the most important and useful polynomials
in mathematics and mathematical physics. Most of monographs and books
related to special functions include Laguerre polynomials (see, e.g., [3,15,16]).

Laguerre polynomials L
(α)
n (x) are defined by (see, e.g., [15, Chapter 12])

(1) L(α)
n (x) =

(1 + α)n
n!

1F1(−n ; 1 + α ; x)(
n ∈ N0, 1 + α ∈ C \ Z−0 , x ∈ C

)
,

where 1F1 is a particular case of the well-known generalized hypergeometric
series pFq (p, q ∈ N0) given by (see, e.g., [15, p. 73]):

(2)
pFq

[
λ1, . . . , λp ;

µ1, . . . , µq ;
z

]
=

∞∑
n=0

(λ1)n · · · (λp)n
(µ1)n · · · (µq)n

zn

n!

= pFq(λ1, . . . , λp; µ1, . . . , µq; z).

Here (α)β denotes the Pochhammer symbol defined (for α, β ∈ C) by

(3) (α)β :=
Γ(α+ β)

Γ(α)
=

{
1 (β = 0; α 6= 0)

α(α+ 1) · · · (α+ n− 1) (β = n ∈ N),
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Γ being the familiar Gamma function and it being read traditionally that
(α)0 := 1. Here and elsewhere, let N, Z−0 , R, and C denote the sets of positive
integers, non-positive integers, real numbers, and complex numbers, respec-
tively, and set N0 := N ∪ {0}. The particular case α = 0 of (1)

(4) Ln(x) = L(0)
n (x) = 1F1(−n ; 1 ; x)

(n ∈ N0, x ∈ C)

is called as simple Laguerre (or Laguerre) polynomial which has also attracted
much attention. For certain formulas and properties including these polyno-
mials, one may be referred (for example) to [1], [3, Section 6.2], [5, 6, 12–14],
[15, pp. 201–202], [7–11,17,18].

Among numerous generating functions which can produce (1) or (4), we
recall the following (see, e.g., [15, p. 202])

(5)
1

(1− t)1+α
exp

(
−xt
1− t

)
=

∞∑
n=0

L(α)
n (x) tn.

Ali et al. [2] brought in a generalization of Bateman polynomial and pre-
sented some interesting and presumably useful properties and formulas involv-
ing it. In the same vein, in this paper, we introduce a generalization of Laguerre
polynomials and investigate certain properties and formulas associated with it
such as recurrence relation, differential formula, generating function, Rodrigues
formula, and orthogonality.

2. Generalized Laguerre polynomials

We begin by introducing generalized Laguerre polynomials, which are de-

noted by L
(α)
p,n(x) whose generating function is given as in Definition 1.

Definition 1. Let p ∈ N; x, α ∈ C.

(6)
1

(1− t)1+α
exp

(
−xptp

(1− t)p

)
=

∞∑
n=0

L(α)
n,p(x) tn

(p ∈ N; x, α ∈ C) .

Obviously L
(α)
n,1(x) = L

(α)
n (x). Hereafter we explore certain formulas and

properties involving the generalized Laguerre polynomials in (6). Throughout,
let F (p;x, t) be the left-handed generating function in (6).

Explicit representation

An explicit expression of the generalized Laguerre polynomials L
(α)
n,p(x) in

the following theorem.
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Theorem 2.1. Let x, α ∈ C, p ∈ N, and n ∈ N0. Then

L(α)
n,p(x) = (1 + α)n

[n/p]∑
k=0

(−1)k

k! (1 + α)pk (n− pk)!
xpk(7)

=
(1 + α)n

n!

[n/p]∑
k=0

(−1)(p+1)k (−n)pk
k! (1 + α)pk

xpk.(8)

Here and throughout, [m] denotes the greatest integer less than or equal to
m ∈ R. Or, equivalently,

(9) L(α)
n,p(x) =

(1 + α)n
n!

pFp


−n
p
,
−n+ 1

p
, . . . ,

−n− 1 + p

p
;

α+ 1

p
,
α+ 2

p
, . . . ,

α+ p

p
;

(−1)p+1 xp

 .
Proof. Expanding the exponential in the left-hand side of (6), we find

F (p;x, t) =
1

(1− t)1+α+pk
∞∑
k=0

(−1)k xpk tpk

k!
.

Employing the binomial theorem

(10) (1− z)−a =

∞∑
n=0

(a)n
n!

zn = 1F0 (a ; ; z) (a ∈ C; |z| < 1),

we obtain the following double series

(11) F (p;x, t) =

∞∑
n=0

∞∑
k=0

(−1)k (1 + α+ pk)n x
pk

k!n!
tn+pk.

Recall a known double series manipulation (see, e.g., [4, Eq. (1.1)])

(12)

∞∑
n=0

∞∑
k=0

Ak,n =

∞∑
n=0

[n/p]∑
k=0

Ak,n−pk (p ∈ N)

⇐⇒

(13)

∞∑
n=0

[n/p]∑
k=0

Ak,n =

∞∑
n=0

∞∑
k=0

Ak,n+pk (p ∈ N),

where Ax,y denotes a function of two variables x and y and the involved double
series is assumed to be absolutely convergent.

An application of (12) in (11) gives

(14) F (p;x, t) =

∞∑
n=0

[n/p]∑
k=0

(−1)k (1 + α+ pk)n−pk x
pk

k! (n− pk)!
tn.
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Equating the coefficients of tn in the right members of (6) and (14) yields

(15) L(α)
n,p(x) =

[n/p]∑
k=0

(−1)k (1 + α+ pk)n−pk
k! (n− pk)!

xpk.

Using (3) and a known identity

(16) (n− k)! =
(−1)k n!

(−n)k
(k, n ∈ N0; 0 ≤ k ≤ n) ,

we derive

(17) (1 + α+ pk)n−pk =
(1 + α)n
(1 + α)pk

and (n− pk)! =
(−1)pk n!

(−n)pk
.

Hence, use of (17) in (15) leads to the desired identity (8).

Finally, applying the multiplication formula

(18) (λ)mn = mmn
m∏
j=1

(
λ+ j − 1

m

)
n

(λ ∈ C; m ∈ N; n ∈ N0)

to (8) provides the equivalent expression (9). �

Remark 2.2. Eq. (8) reveals that, for each n ∈ N0, L
(α)
n,p(x) is a polynomial in

the variable x of degree at most p[n/p]. In fact, the degree of L
(α)
n,p(x) is a step

function in the following manner:

(19) degL(α)
n,p(x) = `p (`p ≤ n < (`+ 1)p; ` ∈ N0) .

Generating function

Establish two generating functions for the generalized Laguerre polynomials

L
(α)
n,p(x) in Theorem 2.3.

Theorem 2.3. Let t, x, α, c ∈ C and p ∈ N. Then

(20)

et 0Fp

(
;
α+ 1

p
,
α+ 2

p
, . . . ,

α+ p

p
; −
(
xt

p

)p)
=

∞∑
n=0

L
(α)
n,p(x) tn

(1 + α)n

and

(21)

1

(1− t)c p
Fp

(
c
p ,

c+1
p , . . . , c+p−1p ;

α+1
p , α+2

p , . . . , α+pp ;
−
(

xt

1− t

)p)

=

∞∑
n=0

(c)n L
(α)
n,p(x) tn

(1 + α)n
(|t| < 1).
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Proof. Using (7), (13), and (18), we have

(22)

∞∑
n=0

L
(α)
n,p(x) tn

(1 + α)n
=

∞∑
n=0

tn

n!

∞∑
k=0

(−xptp)k

k! (1 + α)pk

= et
∞∑
k=0

1

k!
p∏
j=1

(
α+j
p

)
k

(
−
(
xt

p

)p)k
.

In view of (2), the rightmost term of (22) can be expressed as the left-hand
side of (20).

Employing (7), (13), and (10), we find

∞∑
n=0

(c)n L
(α)
n,p(x) tn

(1 + α)n
=

∞∑
k=0

∞∑
n=0

(c+ pk)n t
n

n!
· (c)pk {−(xt)p}k

k! (1 + α)pk

=
1

(1− t)c
∞∑
k=0

(c)pk
k! (1 + α)pk

{
−
(

xt

1− t

)p}k
,

which, upon using (18) and (2), leads to the left-hand member of (21). �

It is noted that the case c = 1 +α of (21) yields the generating function (6).

Recurrence relation

Present some recurrence relations involving the generalized Laguerre poly-

nomials L
(α)
n,p(x) and their derivative in the following theorem.

Theorem 2.4. Let x, α ∈ C and p, n ∈ N. Also let D = d
dx . Then

(23) xDL(α)
n,p(x)− nL(α)

n,p(x) + (α+ n)L
(α)
n−1,p(x) = 0;

(24) DL(α)
n,p(x) =

{
0 (0 ≤ n ≤ p− 1)

−p xp−1 L(α+p)
n−p,p(x) (n ≥ p);

(25) (α+ n)L
(α)
n−1,p(x)− nL(α)

n,p(x) = p xp L
(α+p)
n−p,p(x) (n ≥ p).

Proof. From (22), we can set

(26) G(p;x, t) :=

∞∑
n=0

L
(α)
n,p(x) tn

(1 + α)n
= et Φ

(
−
(
xt

p

)p)
,

where the function

Φ

(
−
(
xt

p

)p)
=

∞∑
k=0

1

k!
p∏
j=1

(
α+j
p

)
k

(
−
(
xt

p

)p)k
.
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Differentiating G(p;x, t) with respect to x and t, respectively, gives

Gx(p;x, t) = etΦ
′
(
−
(
xt

p

)p)
· −x

p−1 tp

pp−1

and

Gt(p;x, t) = etΦ

(
−
(
xt

p

)p)
+ etΦ

′
(
−
(
xt

p

)p)
· −x

p tp−1

pp−1
.

Combining Gx(p;x, t) and Gt(p;x, t) yields

(27) xGx(p;x, t)− tGt(p;x, t) + tG(p;x, t) = 0.

Applying the series in (26) to (27), we obtain

(28)

∞∑
n=1

xDL
(α)
n,p(x) tn

(1 + α)n
−
∞∑
n=1

nL
(α)
n,p(x) tn

(1 + α)n
+

∞∑
n=1

L
(α)
n−1,p(x) tn

(1 + α)n−1
= 0.

We observe from (28) that each coefficient of tn should be zero, which gives
(23).

Differentiating both sides of (6) provides

∞∑
n=1

DL(α)
n,p(x) tn =

1

(1− t)1+α+p
exp

(
−xptp

(1− t)p

)
·
(
−p xp−1 tp

)
= −p xp−1

∞∑
n=0

L(α+p)
n,p (x) tn+p

= −p xp−1
∞∑
n=p

L
(α+p)
n−p,p(x) tn,

which, upon equating the coefficients of tn (n ≥ p) in the leftmost and rightmost
members, produces (24).

Setting (24) in (23) provides (25). �

Differential equation

Provide a differential equation which is satisfied by the generalized Laguerre

polynomials L
(α)
n,p(x) in Theorem 2.5 (for differential equation whose solution is

pFq, see, e.g., [15, Section 47]).

Theorem 2.5. Let x, α ∈ C and p, n ∈ N. Also let θ = x d
dx . Then

(29)

[
1

p
θ

p∏
j=1

(
1

p
(θ/p− 1 + α+ j)

)

+ (−1)pxp
p∏
j=1

1

p
(θ + j − n− 1)

]
L(α)
n,p(x) = η(α, p, n),
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where α+j
p ∈ C \ Z−0 and no two α+j

p differ by an integer (j = 1, . . . , p), and

η(α, p, n) = (−1)p+(p+1)[n/p]
pp (1 + α)n · (−n+ p[n/p])p

n! [n/p]!

×

p∏
j=1

(
j−n−1
p

)
[n/p]

p∏
j=1

(
j+α
p

)
[n/p]

xp([n/p]+1).

Proof. We derive from (8) that

(30) L(α)
n,p(x) =

(1 + α)n
n!

[n/p]∑
k=0

p∏
j=1

(
j−n−1
p

)
k

k!
p∏
j=1

(
j+α
p

)
k

(−1)(p+1)k xpk.

Since θ
px

pk = k xpk, we have

(31)
1

p
(θ/p+ j + α− 1)xpk =

k + j + α− 1

p
xpk.

Applying (30) to the following differential operator with the aid of (31), we get

(32)

LDE :=

[
1

p
θ

p∏
j=1

(
1

p
(θ/p− 1 + α+ j)

)]
L(α)
n,p(x)

=
(1 + α)n

n!

[n/p]∑
k=1

p∏
j=1

(
j−n−1
p

)
k
· k

p∏
j=1

k+j+α−1
p

k!
p∏
j=1

(
j+α
p

)
k

(−1)(p+1)k xpk.

We then obtain that

LDE =
(1 + α)n

n!

[n/p]∑
k=1

p∏
j=1

(
j−n−1
p

)
k

(k − 1)!
p∏
j=1

(
j+α
p

)
k−1

(−1)(p+1)k xpk.

Putting k − 1 = k′ and cancelling the prime on k provides

LDE = (−1)p+1xp
(1 + α)n

n!

[n/p]−1∑
k=0

p∏
j=1

(
j−n−1
p

)
k
·
p∏
j=1

(
j−n−1
p + k

)
k!

p∏
j=1

(
j+α
p

)
k

(−1)(p+1)k xpk.
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We get

LDE = (−1)p+1xp
(1 + α)n

n!

[n/p]∑
k=0

p∏
j=1

(
j−n−1
p

)
k
·
p∏
j=1

(
j−n−1
p + k

)
k!

p∏
j=1

(
j+α
p

)
k

(−1)(p+1)k xpk

+ η(α, p, n).

Noting

p∏
j=1

(
θ

p
+
j − n− 1

p

)
xpk =

p∏
j=1

(
k +

j − n− 1

p

)
xpk,

we find from (30) that

(33) LDE =(−1)p+1xp
[ p∏
j=1

(
θ + j − n− 1

p

)]
L(α)
n,p(x) + η(α, p, n).

Finally, matching the first equality of (32) with (33) gives (29). �

The Rodrigues formula

Here and throughout, let Dk = dk

dxk (k ∈ N0). We give the Rodrigues formula

for the generalized Laguerre polynomials L
(α)
n,p(x) in the following theorem.

Theorem 2.6. Let x, α ∈ C and p, n ∈ N. Then

(34)
L(α)
n,p(x) =

x−α exp
(
−(−1)

1
px
)

n!
Dn
[
exp

(
(−1)

1
px
)
xn+α

]
,

where n is a multiple of p.

Proof. Here (7) is written:

(35) L(α)
n,p(x) =

[n/p]∑
k=0

(−1)k (1 + α)n
k! (1 + α)pk (n− pk)!

xpk.

Noting

Dn−pkxn+α =
(1 + α)n x

α+pk

(1 + α)pk

and

Dpk exp
(

(−1)
1
px
)

= (−1)k exp
(

(−1)
1
px
)
,
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we may get

L(α)
n,p(x) =

x−α exp
(
−(−1)

1
px
)

n!

×
[n/p]∑
k=0

n!
{
Dpk exp

(
(−1)

1
px
)}{

Dn−pkxn+α
}

k! (n− pk)!

=
x−α exp

(
−(−1)

1
px
)

n!

×
[n/p]∑
k=0

(
n

pk

){
Dpk exp

(
(−1)

1
px
)}{

Dn−pkxn+α
}

=
x−α exp

(
−(−1)

1
px
)

n!
Dn
[
exp

(
(−1)

1
px
)
xn+α

]
. �

Orthogonality

Explore orthogonality for the generalized Laguerre polynomials L
(α)
n,p(x) in

Theorem 2.7.

Theorem 2.7. Let x, α ∈ C with <(α) > 1 and p, m, n ∈ N be such that p is
odd. Then

(36)

∫ ∞
0

xα exp
(

(−1)
1
px
)
L(α)
n,p(x)L(α)

m,p(x) dx = 0 (m 6= n) .

Also

(37)

∫ ∞
0

xα exp
(

(−1)
1
px
) {

L(α)
n,p(x)

}2

dx =
(−1)n+[n/p]

[n/p]!
Γ(1 + α+ n),

where n is a multiple of p.

Proof. Let Lm,n(p;α) be the left member of (36). Applying the Rodrigues
formula (35) gives

Lm,n(p;α) =
1

n!

∫ ∞
0

Dn
[
exp

(
(−1)

1
px
)
xn+α

]
L(α)
m,p(x) dx.

Integrating by parts n times, we obtain

(38) Lm,n(p;α) =
(−1)n

n!

∫ ∞
0

exp
(

(−1)
1
px
)
xn+α

[
DnL(α)

m,p(x)
]
dx.

In the process of integrating by parts, the integrated section

Dn−k
[
exp

(
(−1)

1
px
)
xn+α

]
Dk−1

[
L(α)
m,p(x)

]
(1 ≤ k ≤ n)

vanishes both at x = 0 and as x → ∞ when p is odd and <(α) > −1. Since

L
(α)
m,p(x) is of degree at most m, DnL

(α)
m,p(x) = 0 for n > m. We find from (38)
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that Lm,n(p;α) = 0 for n > m. Since the integral Lm,n(p;α) is symmetric in
n and m, Lm,n(p;α) = 0 for n < m. This proves (36).

From (7), we have

L(α)
n,p(x) =

(−1)[n/p](1 + α)n
[n/p]! (1 + α)p[n/p] (n− p[n/p])!

xp[n/p] +$n(x),

where $n(x) is a polynomial in x of degree at most p[n/p] − 1. In particular,
when n is a multiple of p,

L(α)
n,p(x) =

(−1)[n/p]

[n/p]!
xn +$n−1(x),

where $n−1(x) is a polynomial in x of degree at most n− 1. Therefore we find

(39) DnL(α)
n,p(x) =

(−1)[n/p]

[n/p]!
n!,

where n is a multiple of p. Setting (39) in the case m = n of (38) yields

Ln,n(p;α) =
(−1)n+[n/p]

[n/p]!

∫ ∞
0

e−x xn+α dx

=
(−1)n+[n/p]

[n/p]!
Γ(1 + α+ n) (<(α) > −1),

which p is an odd positive integer and n ∈ N is a multiple of p. �

Some other properties

Provide some other identities involving the generalized Laguerre polynomials

L
(α)
n,p(x) in Theorem 2.8.

Theorem 2.8. Let x, y, α, β ∈ C and p, n ∈ N. Then

(40)

∫ ∞
0

xαe−x L(α)
p,n(x) dx =

Γ(1 + α+ n)

n!

× pF0

(
−n
p
,
−n+ 1

p
, . . . ,

−n+ p− 1

p
; ; (−1)p+1pp

)
(<(α) > −1; n is a multiple of p) ;

(41) L(α)
n,p(x) =

n∑
k=0

(α− β)k L
(β)
n−k,p(x)

k!
;

(42) L(α+β+1)
n,p (z) =

n∑
k=0

L
(α)
k,p(x)L

(β)
n−k,p(y),
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where xp + yp ∈ C \ {0} and z := (xp + yp)
1
p whose principal branch can be

chosen;

(43) L(α)
n,p(xy) =

n∑
k=0

(1 + α)n (1− y)n−k yk L
(α)
k,p(x)

(n− k)! (1 + α)k
.

Proof. Using (8) and Euler’s integral of the gamma function with the aid of
(3), we have

∫ ∞
0

xαe−xL(α)
p,n(x)dx =

(1 + α)n
n!

[n/p]∑
k=0

(−1)(p+1)k (−n)pk
k! (1 + α)pk

∫ ∞
0

e−x xα+pk dx

=
Γ(1 + α+ n)

n!

[n/p]∑
k=0

(−1)(p+1)k (−n)pk
k!

,

which, upon using (18) and (2), yields (40).
From (6), we have

∞∑
n=0

L(α)
n,p(x) tn = (1− t)−1−α exp

(
−xptp

(1− t)p

)
= (1− t)−(α−β) · (1− t)−1−β exp

(
−xptp

(1− t)p

)
=

∞∑
n=0

∞∑
k=0

(α− β)k
k!

L(β)
n,p(x)tn+k

=

∞∑
n=0

n∑
k=0

(α− β)k
k!

L
(β)
n−k,p(x)tn,

which, upon equating the coefficients of tn, yields (41).
We find from (6) that

∞∑
n=0

n∑
k=0

L
(α)
k,p(x)L

(β)
n−k,p(y) tn

= (1− t)−1−α exp

(
−xptp

(1− t)p

)
(1− t)−1−β exp

(
−yptp

(1− t)p

)
= (1− t)−1−(α+β+1) exp

(
−zptp

(1− t)p

)
=

∞∑
n=0

L(α+β+1)
n,p (z) tn,

which, upon matching the coefficients of tn, gives (42).
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We consider

et 0Fp

(
;
α+ 1

p
,
α+ 2

p
, . . . ,

α+ p

p
;

(
−xyt

p

)p)
= e(1−y)t eyt 0Fp

(
;
α+ 1

p
,
α+ 2

p
, . . . ,

α+ p

p
;

(
−x(yt)

p

)p)
,

which, in view of (20), produces

∞∑
n=0

L
(α)
n,p(xy) tn

(1 + α)n
=

( ∞∑
n=0

(1− y)n tn

n!

)( ∞∑
k=0

L
(α)
k,p(x) yktk

(1 + α)k

)
.

Then, from the last equality, we obtain (43). �

3. Conclusion remarks

Since L
(α)
n,1(x) = L

(α)
n (x) and L

(0)
n,1(x) = Ln(x), the results in Section 2 reduce

to yield certain properties and formulas for the Laguerre polynomials L
(α)
n (x)

and the simple Laguerre polynomials Ln(x).
The identity (9) is rewritten as follows:

(44)

n!

(1 + α)n
L(α)
n,p(x) =pFp

[
−n
p
,
−n+ 1

p
, . . . ,

−n− 1 + p

p
;

α+ 1

p
,
α+ 2

p
, . . . ,

α+ p

p
; (−1)p+1 xp

]
,

which, upon setting p = 1, yields a known expression for the Laguerre polyno-
mials

(45)
n!

(1 + α)n
L(α)
n (x) = 1F1[−n ; 1 + α ; x].

It is known (see, e.g., [15, Section 48]) that there are 3p linearly independent
contiguous function relations for pFp. Using the three contiguous relations for

1F1 with the aid of (45), the three mixed recurrence relations for L
(α)
n (x) are

established (see [15, p. 203, Eqs. (8), (9) and (10)]), for example,

(46) L(α)
n (x) = L

(α)
n−1(x) + L(α−1)

n (x).

Similarly, 3p different recurrence relations for L
(α)
n,p(x) may be obtained from

the 3p contiguous relations for pFp. Unfortunately, no recurrence relations for

L
(α)
n,p(x) (p ≥ 2) can be derived from the 3p contiguous relations for pFp. Indeed,

if 1 is added or subtracted at one of the numerator or denominator parameters
in the right member of (44), the other parameters cannot be expressed in the
same fashion as in (44) whenever p ≥ 2. The generalized Laguerre polynomials
introduced here and their properties and formulas presented are hoped to be
potentially useful.
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