• Title/Summary/Keyword: experimental module

Search Result 1,200, Processing Time 0.022 seconds

Structural Performance Test according to Initial shape design of PF-BRB (조립식 좌굴방지가새형 이력댐퍼의 초기형상설계에 따른 구조성능실험)

  • Kim, Yu-Seong;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.71-79
    • /
    • 2023
  • In this study, a prefabricated buckling brace (PF-BRB) was proposed, and a test specimen was manufactured based on the design formula for the initial shape and structural performance tests were performed. As a result of the experiment, all standard performance requirements presented by KDS 41 17 00 and MOE 2021 were satisfied before and after replacement of the reinforcement module, and no fracture of the joint module occurred. As a result of the incremental load test, the physical properties showed a significant difference in the stiffness ratio after yielding under the compressive load of the envelope according to the experimental results. It is judged necessary to further analyze the physical properties according to the experimental results through finite element analysis in the future.

Power Performance Characteristics of Transparent Thin-film BIPV Module depending on an installation angle (건물일체형 투광성 PV모듈의 설치각도별 발전특성에 관한 연구)

  • Song, Jong-Hwa;Yoon, Jong-Ho;An, Young-Sub;Kim, Seok-Ge;Lee, Sung-Jin;Choung, Youn-Kyoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.58-63
    • /
    • 2008
  • This study has analysed power output characteristics of transparent thin-film PV module depending on incidence angle and azimuth. The experiment results showed power outputs of transparent thin-film PV module applied to full-scale mock up model on slope of $90^{\circ},\;30^{\circ},\;0^{\circ}$ to the south. The simulation results was evaluated power outputs of transparent thin-film PV module depending on incidence angle and azimuth after calibrating the experimental and computed data. As a result. the best power output performance of transparent thin-film PV module was obtained at slope of $30^{\circ}$ to the south, producing the annual power output of 977kWh/kWp. The annual power output data demonstrated that the PV module with a slope of $30^{\circ}$ could produce a 68 % higher power output than that with a slope of $90^{\circ}$ with respect to the inclined slope of the module, Furthermore, the PV module facing south showed a 22 % higher power output than that facing to the east in terms of the angle of the azimuth, Specipically. the varying power output with incidence angle of PV module can be resulted from the influence of incidence angle modifier of glass on PV module. That is, the solar energy transmission can be reduced as an increase of incidence angle of PV module. Therefore, when the inclined slope of the PV module was over $70^{\circ}$ there was a significant reduction of power output, and this was caused by the decrease of solar energy transmission in the transparent thin-film PV module.

Improvement of a Context-aware Recommender System through User's Emotional State Prediction (사용자 감정 예측을 통한 상황인지 추천시스템의 개선)

  • Ahn, Hyunchul
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.4
    • /
    • pp.203-223
    • /
    • 2014
  • This study proposes a novel context-aware recommender system, which is designed to recommend the items according to the customer's responses to the previously recommended item. In specific, our proposed system predicts the user's emotional state from his or her responses (such as facial expressions and movements) to the previous recommended item, and then it recommends the items that are similar to the previous one when his or her emotional state is estimated as positive. If the customer's emotional state on the previously recommended item is regarded as negative, the system recommends the items that have characteristics opposite to the previous item. Our proposed system consists of two sub modules-(1) emotion prediction module, and (2) responsive recommendation module. Emotion prediction module contains the emotion prediction model that predicts a customer's arousal level-a physiological and psychological state of being awake or reactive to stimuli-using the customer's reaction data including facial expressions and body movements, which can be measured using Microsoft's Kinect Sensor. Responsive recommendation module generates a recommendation list by using the results from the first module-emotion prediction module. If a customer shows a high level of arousal on the previously recommended item, the module recommends the items that are most similar to the previous item. Otherwise, it recommends the items that are most dissimilar to the previous one. In order to validate the performance and usefulness of the proposed recommender system, we conducted empirical validation. In total, 30 undergraduate students participated in the experiment. We used 100 trailers of Korean movies that had been released from 2009 to 2012 as the items for recommendation. For the experiment, we manually constructed Korean movie trailer DB which contains the fields such as release date, genre, director, writer, and actors. In order to check if the recommendation using customers' responses outperforms the recommendation using their demographic information, we compared them. The performance of the recommendation was measured using two metrics-satisfaction and arousal levels. Experimental results showed that the recommendation using customers' responses (i.e. our proposed system) outperformed the recommendation using their demographic information with statistical significance.

Performance test of PVT-water system considering ambient air and circulating water temperature (외기 및 순환수 온도조건을 고려한 PVT-water 시스템의 성능실험)

  • Jeong, Yong-Dae;Nam, Yujin
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.83-88
    • /
    • 2015
  • Purpose: Photovoltaic system is a technique for producing electrical power by utilizing solar energy, which can be used over 20 years with simple maintenance. However, in the case of photovoltaic systems, the energy conversion efficiency decreases as the surface temperature of module increases, compared with other renewable energy technologies. In this regard, PVT module can increase the energy utilization of a composite module as producing heat and electricity simultaneously by using solar energy. Currently, many researches have been promoting in order to develop a high efficiency PVT module in Korea. However, there are a few studies about the performance of the modules corresponding the shape of types and various heat exchangers of the PVT module. In this study, the electrical performance was measured by the change of the ambient temperature and the circulating water temperature using the fabricated PVT module. Method: Experiments were performed using a solar simulator. And this experiment was assumed that the weather condition was in each season, as winter, spring, autumn and summer. It was identified that the I-V curve associated with the change of the experimental conditions and confirmed the change in the electrical characteristics. Result: As a result, it was figured out that the surface temperature and the electrical performance changes in case conditions. The electrical performance was calculated in different temperature condition and the power production was confirmed by the change of module temperature.

A Metrics Set for Measuring Software Module Severity (소프트웨어 모듈 심각도 측정을 위한 메트릭 집합)

  • Hong, Euy-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.197-206
    • /
    • 2015
  • Defect severity that is a measure of the impact caused by the defect plays an important role in software quality activities because not all software defects are equal. Earlier studies have concentrated on defining defect severity levels, but there have almost never been trials of measuring module severity. In this paper, first, we define a defect severity metric in the form of an exponential function using the characteristics that defect severity values increase much faster than severity levels. Then we define a new metrics set for software module severity using the number of defects in a module and their defect severity metric values. In order to show the applicability of the proposed metrics, we performed an analytical validation using Weyuker's properties and experimental validation using NASA open data sets. The results show that ms is very useful for measuring the module severity and msd can be used to compare different systems in terms of module severity.

Development of a Cooling System for a Concentrating Photovoltaic Module (고집광 태양전지 모듈의 냉각시스템 개발)

  • Kim, Tae-Hoon;Do, Kyu-Hyung;Choi, Byung-Il;Han, Yong-Shik;Kim, Myung-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.551-560
    • /
    • 2011
  • In this paper, a cooling system that includes a heat spreader and a natural convective heat sink is proposed for the cooling of a concentrating photovoltaic (CPV) module. The heat spreader and the natural convective heat sink are designed on the basis of previous analytical investigations. In order to evaluate the proposed cooling system, we conducted experimental investigations varying the heat rate and the inclined angle of the cooling system. From the experimental results, it is found that the proposed cooling system satisfies the design constraints for good operation of the CPV module. Finally, a correlation is suggested for estimating the effects of the heat rate and the inclined angle on the thermal performance of the natural convective heat sink is suggested.

Performance of Non-starting Conditioning System using Thermoelectric Modules for Hybrid Heavy Trucks (대형 하이브리드 트럭용 열전 무시동 공조시스템 성능 연구)

  • Park, Kyungmin
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.310-317
    • /
    • 2013
  • To reduce vehicle fuel consumption due to not only driving but also air conditioning, battery-operated non-starting conditioning systems with thermoelectric modules and without mechanical elements like compressors are being manufactured for use by hybrid heavy trucks in the near future. In this study, the voltage and current consumed by a thermoelectric module were measured to determine the required battery power, and the performance of the conditioning system with air temperature, and humidity of the inlet/outlet modules and inside/outside the cabin for a truck, was evaluated using experimental apparatus under actual conditions. The results showed that, the thermoelectric module can be continously operated for about 1.5 h using existing 24 V batteries. The coefficent of performance(COP) of the cooling and heating modes was calculated to be an average 0.8-1.32. As expected, the heating performance was 30% more efficient than the cooling performance, which is general characteristic of thermoelectric modules.

Development of CAD/CAM System with Reusable Design Information for Improving Production Efficiency (생산효율의 향상을 위한 설계정보의 재사용이 가능한 CAD/CAM 시스템 개발)

  • Kang, Bong Ku;Lee, Jong Hang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.7
    • /
    • pp.597-604
    • /
    • 2014
  • High efficiency production requires the improved performance of CAD/CAM system. Although the CAD and CAM have been significantly developed over the last three decades, they must still study on the reuse of information during process. In this study, we developed a new integrated CAD/CAM system which can reuse the information generated in previous processes, in order to improve its performance. In addition, the developed system was verified by comparing with working-time, and system reproducibility was also examined with tolerance in the unmanned operation. Experimental results showed 58% reduction in working-time of 2D Auto-CAM module, 80% in case of 3D Auto-Exchange module, and 54.5% in case of Auto-Design module.

A New Controllable Active Clamp Algorithm for Switching Loss Reduction in a Module Integrated Converter System

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.465-471
    • /
    • 2014
  • This paper proposes a new switching algorithm for an active clamp snubber to improve the efficiency of a module integrated converter system. This system uses an active clamp method for the snubber circuit for the efficiency and reliability of the system. However, the active clamp snubber circuit has the disadvantage that system efficiency is decreased by switch operating time because of heat loss in resonance between the snubber capacitor and leakage inductance. To address this, this paper proposes a new switching algorithm. The proposed algorithm is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time. Also, the snubber switch is operated at zero voltage switching by turning on the snubber switch before main switch turn-off. Simulation and experimental results are presented to show the validity of the proposed new active clamp control algorithm.