• Title/Summary/Keyword: experimental art

Search Result 787, Processing Time 0.025 seconds

Optimal Diversity of Recommendation List for Recommender Systems based on the Users' Desire Diversity

  • Mehrjoo, Saeed;Mehrjoo, Mehrdad;Hajipour, Farahnaz
    • Journal of Information Science Theory and Practice
    • /
    • v.7 no.3
    • /
    • pp.31-39
    • /
    • 2019
  • Nowadays, recommender systems suggest lists of items to users considering not only accuracy but also diversity and novelty. However, suggesting the most diverse list of items to all users is not always acceptable, since different users prefer and/or tolerate different degree of diversity. Hence suggesting a personalized list with a diversity degree considering each user preference would improve the efficiency of recommender systems. The main contribution and novelty of this study is to tune the diversity degree of the recommendation list based on the users' variety-seeking feature, which ultimately leads to users' satisfaction. The proposed approach considers the similarity of users' desire diversity as a new parameter in addition to the usual similarity of users in the state-of-the-art collaborative filtering algorithm. Experimental results show that the proposed approach improves the personal diversity criterion comparing to the closest method in the literature, without decreasing accuracy.

Palmprint Verification Using Multi-scale Gradient Orientation Maps

  • Kim, Min-Ki
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • This paper proposes a new approach to palmprint verification based on the gradient, in which a palm image is considered to be a three-dimensional terrain. Principal lines and wrinkles make deep and shallow valleys on a palm landscape. Then the steepest slope direction in each local area is first computed using the Kirsch operator, after which an orientation map is created that represents the dominant slope direction of each pixel. In this study, three orientation maps were made with different scales to represent local and global gradient information. Next, feature matching based on pixel-unit comparison was performed. The experimental results showed that the proposed method is superior to several state-of-the-art methods. In addition, the verification could be greatly improved by fusing orientation maps with different scales.

State-of-the-art progress of gaseous radiochemical method for detecting of ionizing radiation

  • Lebedev, S.G.;Yants, V.E.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2075-2083
    • /
    • 2021
  • The article provides a review of the research results obtained during of more than 20 years concerning using the gaseous radiochemical method (GRCM) for detecting of ionizing radiation. This method based on threshold nuclear reactions with production of radioactive noble gas which does not interact with the materials of gaseous tract. The applications of GRCM in the diagnostics of neutrinos, neutrons, charged particles, thermonuclear plasma thermometry, and the study of the structure and dynamics of astrophysical objects, position-sensitive dosimetry of neutron targets with accelerator driving, spatial distribution of the fast neutron flux density in a nuclear reactor allowing the transformation of longitudinal coordinate of neutron flux distribution into a temporal distribution of the radiochemical gas decay counting rate ("barcode" semblance) and measurement of bombarding particles spectra are described. Experimental testing of the described technologies was made on the neutron target driven with the linear proton accelerator of Institute for Nuclear Research of Russian Academy of Sciences (INR RAS).

Road Damage Detection and Classification based on Multi-level Feature Pyramids

  • Yin, Junru;Qu, Jiantao;Huang, Wei;Chen, Qiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.786-799
    • /
    • 2021
  • Road damage detection is important for road maintenance. With the development of deep learning, more and more road damage detection methods have been proposed, such as Fast R-CNN, Faster R-CNN, Mask R-CNN and RetinaNet. However, because shallow and deep layers cannot be extracted at the same time, the existing methods do not perform well in detecting objects with fewer samples. In addition, these methods cannot obtain a highly accurate detecting bounding box. This paper presents a Multi-level Feature Pyramids method based on M2det. Because the feature layer has multi-scale and multi-level architecture, the feature layer containing more information and obvious features can be extracted. Moreover, an attention mechanism is used to improve the accuracy of local boundary boxes in the dataset. Experimental results show that the proposed method is better than the current state-of-the-art methods.

Simple and effective neural coreference resolution for Korean language

  • Park, Cheoneum;Lim, Joonho;Ryu, Jihee;Kim, Hyunki;Lee, Changki
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1038-1048
    • /
    • 2021
  • We propose an end-to-end neural coreference resolution for the Korean language that uses an attention mechanism to point to the same entity. Because Korean is a head-final language, we focused on a method that uses a pointer network based on the head. The key idea is to consider all nouns in the document as candidates based on the head-final characteristics of the Korean language and learn distributions over the referenced entity positions for each noun. Given the recent success of applications using bidirectional encoder representation from transformer (BERT) in natural language-processing tasks, we employed BERT in the proposed model to create word representations based on contextual information. The experimental results indicated that the proposed model achieved state-of-the-art performance in Korean language coreference resolution.

Single Image Dehazing Using Linear Transformation of Saturation (채도의 선형 변환을 이용한 단일 영상 안개 제거)

  • Park, Taehee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.4
    • /
    • pp.197-205
    • /
    • 2019
  • In this paper, an efficient single dehazing algorithm is proposed based on linear transformation by assuming that a linear relationship exists in saturation component between the haze image and haze-free image. First, we analyze the linearity of saturation channel, estimate the medium transmission map in terms of the saturation component. Then, the intensity of haze-free image is assumed by using CLAHE to enhance contrast of haze image. Experimental results demonstrate that proposed algorithm can naturally recover the image, especially can remove color distortion caused by conventional methods. Therefore, our approach is competitive with other state-of-the art single dehazing methods.

Deep Convolutional Neural Network with Bottleneck Structure using Raw Seismic Waveform for Earthquake Classification

  • Ku, Bon-Hwa;Kim, Gwan-Tae;Min, Jeong-Ki;Ko, Hanseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • In this paper, we propose deep convolutional neural network(CNN) with bottleneck structure which improves the performance of earthquake classification. In order to address all possible forms of earthquakes including micro-earthquakes and artificial-earthquakes as well as large earthquakes, we need a representation and classifier that can effectively discriminate seismic waveforms in adverse conditions. In particular, to robustly classify seismic waveforms even in low snr, a deep CNN with 1x1 convolution bottleneck structure is proposed in raw seismic waveforms. The representative experimental results show that the proposed method is effective for noisy seismic waveforms and outperforms the previous state-of-the art methods on domestic earthquake database.

Surface Model and Scattering Analysis for Realistic Game Character

  • Kim, Seongdong;Lee, Myounjae
    • Journal of Korea Game Society
    • /
    • v.21 no.4
    • /
    • pp.109-116
    • /
    • 2021
  • In this paper, we considered that recently 3D game characters have been almost alike realistic expression because of a great mathematical computation and efficient techniques on GPU hardware. We presented the rendering technique and analysis for 3D game characters to simulate and render mathematical approach model from recent researches to perform the game engine for the surface reflection of lighting model. We compare our approach with the existing variant rendering techniques here using Open GL shader language on game engine. The experimental result will be provided the view-dependent visual appearance of variant and effective modeling characters for realistic expression using existing methods on the GPU for effective simulations and rendering process. Since there are many operations that are used redundantly while performing mathematical operations, the necessary functions and requirements have been to compute in advance.

Adversarial-Mixup: Increasing Robustness to Out-of-Distribution Data and Reliability of Inference (적대적 데이터 혼합: 분포 외 데이터에 대한 강건성과 추론 결과에 대한 신뢰성 향상 방법)

  • Gwon, Kyungpil;Yo, Joonhyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Detecting Out-of-Distribution (OOD) data is fundamentally required when Deep Neural Network (DNN) is applied to real-world AI such as autonomous driving. However, modern DNNs are quite vulnerable to the over-confidence problem even if the test data are far away from the trained data distribution. To solve the problem, this paper proposes a novel Adversarial-Mixup training method to let the DNN model be more robust by detecting OOD data effectively. Experimental results show that the proposed Adversarial-Mixup method improves the overall performance of OOD detection by 78% comparing with the State-of-the-Art methods. Furthermore, we show that the proposed method can alleviate the over-confidence problem by reducing the confidence score of OOD data than the previous methods, resulting in more reliable and robust DNNs.

Shared Spatio-temporal Attention Convolution Optimization Network for Traffic Prediction

  • Pengcheng, Li;Changjiu, Ke;Hongyu, Tu;Houbing, Zhang;Xu, Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.130-138
    • /
    • 2023
  • The traffic flow in an urban area is affected by the date, weather, and regional traffic flow. The existing methods are weak to model the dynamic road network features, which results in inadequate long-term prediction performance. To solve the problems regarding insufficient capacity for dynamic modeling of road network structures and insufficient mining of dynamic spatio-temporal features. In this study, we propose a novel traffic flow prediction framework called shared spatio-temporal attention convolution optimization network (SSTACON). The shared spatio-temporal attention convolution layer shares a spatio-temporal attention structure, that is designed to extract dynamic spatio-temporal features from historical traffic conditions. Subsequently, the graph optimization module is used to model the dynamic road network structure. The experimental evaluation conducted on two datasets shows that the proposed method outperforms state-of-the-art methods at all time intervals.