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Abstract 
 

Road damage detection is important for road maintenance. With the development of deep 

learning, more and more road damage detection methods have been proposed, such as Fast 

R-CNN, Faster R-CNN, Mask R-CNN and RetinaNet. However, because shallow and deep 

layers cannot be extracted at the same time, the existing methods do not perform well in 

detecting objects with fewer samples. In addition, these methods cannot obtain a highly 

accurate detecting bounding box. This paper presents a Multi-level Feature Pyramids method 

based on M2det. Because the feature layer has multi-scale and multi-level architecture, the 

feature layer containing more information and obvious features can be extracted. Moreover, an 

attention mechanism is used to improve the accuracy of local boundary boxes in the dataset. 

Experimental results show that the proposed method is better than the current state-of-the-art 

methods. 
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1. Introduction 

Road damage has always been a critical problem; because road conditions are closely related 

to pedestrian/vehicle safety and economic development, road damage detection is essential. 

Many different automatic methods have been proposed to replace manual detection of road 

damage. Generally, these automatic methods use a variety of images with GPS information 

captured by vehicle-mounted smartphones. They can also be used to handle computer vision 

tasks (object detection [1], image enhancement [2], image classification [3], etc.) which have 

been addressed by a deep convolutional neural network (DCNN) [4-6]. These methods based 

on deep learning can perform well in road damage detection. 

Laha Ale et al. [7] proposed the one-stage detection method based on RetinaNet in road 

damage detection. The head of a RetinaNet network is divided into two paths, one for 

classification prediction and the other one for bounding box prediction. In addition, RetinaNet 

can use different backbone networks to learn feature maps, which are the input to the Feature 

Pyramid Networks (FPN) [8]. They trained and compared RetinaNet models with different 

backbones, including DenseNet, ResNet, VGG, and InceptionResNetV2. The experimental 

results demonstrate that the RetinaNet approach can detect road damage with high accuracy. 

Seungbo Shim et al. [9] proposed a road damage detection method based on Fast R-CNN, 

which is an extension of R-CNN. First, Selective Search (SS) is used to select multiple 

high-quality Region Proposals for each input image. Then the image is input into the 

convolutional neural network to extract features. The proposed regions are mapped to the last 

layer of the convolutional neural network, then the ROI (Region of Interest) Pooling layer is 

used to extract the same size output for each proposed region. Finally, Fast R-CNN uses 

Softmax for classification prediction, whereas R-CNN uses Support Vector Machines (SVM). 

Seungbo et al. observed excellent performance when using Fast R-CNN in road damage 

detection. Another famous object detection is YOLO which include YOLO, YOLOv2, 

YOLOv3, YOLOv4, YOLOv5, different versions have different architectures and techniques. 

Alfarrarjeh et al. [10] use YOLOv3 and fine-tuned the darknet53 module, they use two 

augmentation strategies, first is brightening or gray-scale to augment the lower number 

damage types, the second is to use cropping. 

Building on the foundation of Fast R-CNN, Wang et al. [11] proposed using Faster R-CNN 

for road damage detection. Faster R-CNN extracts the feature map of the image using a 

background network, then Region Proposal Network (RPN) is used to generate proposal 

regions The ROI Pooling layer collects the input feature map and proposal regions, mapping 

the proposal regions to the feature map and pooling them into a uniform size region feature 

map, which is then sent to the full connection layer to determine the target class. Finally, the 

region feature map is used to calculate the class of the candidate regions, while the bounding 

box regression is used again to obtain the exact final location of the detection box. Wang et al. 

also expanded the data set before training and found that this method can achieve good 

performance in road damage detection.  

To improve upon Faster R-CNN, Singh et al. [12] proposed using Mask R-CNN for road 

damage detection. Mask R-CNN takes a set of images as input, extracts them through a 

convolution network to create the feature map, and then uses RPN to predict the proposal 

region. Mask R-CNN differs from Faster R-CNN by using ROI Align instead of ROI Pooling. 

Finally, it generates a region proposal which is divided into three branches: box, class and 

mask, and the final result is obtained by a series of convolution operations. This method can 

achieve a Mean F1-score of 0.528 after training in a big data set.  

Of these methods above, two-stage detectors, such as Fast R-CNN and Faster R-CNN, can 
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achieve high accuracy but are computationally inefficient. One-stage detectors, such as 

RetinaNet, YOLO, are more efficient but cannot achieve such high accuracy, and perform 

poorly in detecting objects from fewer samples. To achieve greater accuracy and efficiency, 

we proposed a Multi-level Feature Pyramids method which is based on M2det [13]. In 

addition, an attention mechanism is used to improve the accuracy of local detecting bounding 

boxes in the dataset. We also analyzed each layer of the backbone network and finally chose 

the last two layers of VGG16 for fusion. The proposed method results in an mAP of 63.96. In 

summary, the major contributions of this paper are at least threefold. 

(1) We propose a Multi-level Feature Pyramids method based on M2det which can extract 

more information and obvious features since it has multi-scale and multi-level 

architecture. 

(2) We use a Multi-level Feature Pyramids method in road damage detection and 

classification, it can effectively detect and classify damage of road images. 

(3) An attention mechanism is used in the Multi-level Feature Pyramid to make the 

detection result bounding box more accurate, at the same time, the method get a better 

performance than other methods in experiment. 

The remainder of this paper is organized as follows: Section 2 describes the proposed 

method. In section 3, the experiments and results are detailed. Conclusions are presented in 

section 4. 

2. Proposed Method 

The proposed Multi-level Feature Pyramids is composed of a backbone network and a 

Multi-level Feature Pyramid Network (MLFPN). It extracts two layers of features from 

backbone network and fuses them into the base feature. In MLFPN, there are some Thinned 

U-shape Modules (TUM), the first TUM processes the base feature, then other TUMs process 

the output of the previous TUM and the base feature. These features generated by TUM are 

added to the attention mechanism in Scale Feature Aggregation Module (SFAM). Finally, 

SFAM generates six valid feature layers used for prediction. The proposed method uses 

Multi-level Feature Pyramids in road damage detection; with multi-level and multi-scale 

architecture, it can extract the feature layer which contains more information and obvious 

features. The attention mechanism is used in SFAM to make the detection more accurate. The 

Multi-level Feature Pyramids architecture for road damage detection is shown in Fig. 1. 

We chose VGG16 as the backbone network, and all the fully connected layers are removed 

while maintaining the convolutional layer and the maximum pooling layer. There are two 

different FFMs (Feature Fusion Modules) in the Multi-level Feature Pyramids. FFM1 takes 

out the last two layers of the VGG16 for preliminary fusion, while FFM2 is used for 

feature-enhanced fusion. TUM has an architecture similar to the feature pyramid, it obtains six 

valid feature layers by compressing the feature layer and up-sampling for feature fusion. 

SFAM adjusts the attention of different channels and determines their weight. Finally, the 

valid feature layers with the attention mechanism are used to predict the detecting result. 
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Fig. 1.  Multi-level Feature Pyramid architecture for road detection and classification 

 

In this section, we describe the Multi-level Feature Pyramid in detail. Specifically, 

subsection 2.1 introduces the backbone network, subsection 2.2 introduces the MLFPN, 

subsection 2.3 introduces the detail of FFM, subsection 2.4 introduces the architecture of 

TUM, and subsection 2.5 introduces the architecture of SFAM. Additionally, subsection 2.6 

introduces the loss function. 

2.1 Backbone Network 

VGG was proposed by the Visual Geometry Group in Oxford [14]. There are two types of 

VGG structures, VGG16 and VGG19. VGG19 has three more convolutional layers than 

VGG16, in detail, VGG19 has one more convolutional layer before pooling layer in each of 

the 3, 4 and 5 layer than VGG16. VGG16 was selected as the backbone network because too 

many convolutional layers may lead to gradient disappearance, gradient explosion, or even 

overfitting and falling into local optimum. For the road damage target we detect, the number of 

convolution layers of  VGG16 is relatively more reasonable. In addition, the experiment show 

that the mAP of VGG16 is higher than VGG19 .  In this paper, all the fully connected layers of 

VGG16 were removed while the convolutional layer and the maximum pooling were retained. 

The architecture of VGG16 is shown in Fig. 2. 

 

800x800x3
800x800x64

400x400x128

200x200x256
100x100x512 50x50x1024 25x25x1024

convoloution+Relu

max pooling

 
Fig. 2.  The architecture of VGG16 

 

We can see the architecture of each layer in the figure directly. The input images were 

resized to (800, 800, 3), the resized images are processed by a series of convolution and 

pooling which is divided into five layers. The output of the fourth and fifth layer are fused in 

FFM1.  
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2.2 MLFPN 

As shown in Fig. 1, the MLFPN is composed of four parts: FFM1, FFM2, TUM and SFAM. 

There are a total of 8 TUMs in the MLFPN. The first TUM learns from  
base

X , the other TUMs 

take two inputs,  
base

X  and the output of the previous TUM. The output of multi-level and 

multi-scale features are described as shown in (1). 
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where 
base

X  denotes base features, 
l

X  represents the valid feature layer with the max scale 

of the l t h−   TUM, L   indicates the number of TUMs, 
l

T  denotes the  −l t h  TUM 

processing, and  F  represents the FFM2 processing. Finally, SFAM combines feature maps 

of the same scale of each TUM to form the feature pyramid. 

2.3 FFM 

There are two different FFMs in Multi-level Feature Pyramids; FFM1 is used for preliminary 

fusion and FFM2 is used for feature-enhanced fusion. The details of FFMs are shown in Fig. 3. 

 

Conv
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   (a)                                                                                   (b) 

Fig. 3.  FFM detail, (a) represents FFM1, (b) represents FFM2 

 

In FFM1, the outputs of the last two layers from VGG16 are fused. Specifically, the (25, 25, 

1024) feature layer is convoluted and up-sampled to change the shape to (50, 50, 512), and the 

(50, 50, 512) feature layer is convoluted to change the shape to (50, 50, 256). Then these two 

results are stacked to a (50, 50, 768) preliminary fused feature layer. This fused feature layer is 

called the base feature. In FFM2, the (50, 50, 128) feature layer of the six valid feature layers 

from the TUM is fused with the initial fused base feature from FFM1. Finally, it outputs a (50, 

50, 256) enhanced fused feature layer. This feature layer can be passed into the TUM as input 

again. 

2.4 TUM 

TUM uses a thinner U-shaped network which is same as the feature pyramid, it contains 

multi-level and multi-scale features. The architecture of TUM is shown in Fig. 4. 
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Fig. 4.  The architecture of TUM 

 

In TUM, the encoder is made up of a series of 3×3 convolutional layers with a stride of 2. 

The decoder uses the output of these layers as reference features. In addition, after 

up-sampling and element-wise sum operation, we added 1×1 convolution layers at the decoder 

branch to enhance learning ability and keep smoothness for the features. All of the outputs 

form the multi-scale features of the current level in the decoder of each TUM. The outputs of 

stacked TUMs form the multi-level and multi-scale features; shallow-level features are 

provided by the front TUM, medium-level features are provided by the middle TUM, and 

deep-level features are provided by the back TUM. 

2.5 SFAM 

The purpose of SFAM is to aggregate the multi-level and multi-scale features generated by 

TUMs into a multi-level feature pyramid. The architecture of SFAM is shown in Fig. 5. 
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Fig. 5.  SFAM architecture 

 

SFAM uses the attention mechanism, which makes the detection result bounding box more 

accurate. The attention mechanism is inspired by the physiological perception of the 

environment. The human visual system has a tendency to select specific information from an 

image, focusing on those parts and ignoring extraneous information. Hu et al. [15] presented a 

very significant structure of the SENet model. The core of SENet is an attention mechanism 

module which is divided into three parts: squeeze, excitation and attention. The channel 

attention mechanism is based on the importance of each feature. For different tasks, features 

can be simply and effectively assigned based on input. SFAM aims at aggregate the 

multi-level multi-scale features generated by TUMs into a multi-level feature pyramid. The 
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first step is to overlay the channel of same scale features generated by different TUMs, the 

overlapping channels can be expressed as (2). 

 

 =  1 2
, , . . . , , . . .

i
Y Y Y Y  (2)       

Of these, Y  represent the feature map of different scales,  it can be represented as (3). 
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In detail, i  represent the i t h−  scale and l  represent the l t h−  layer, each scale of 

the aggregated feature pyramid contains the same scale of features from different layers.  
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In (4) - (5),   represent the Rectified Linear Unit,   represent the Sigmoid function. The 

second step of SFAM is to introduce the attention mechanism based channel domain to focus 

on the channel that is most helpful for detection. The channel information z  is generated by 

global pooling during the squeezing phase, in order to capture channel dependencies fully, the 

following step learns the attention mechanism through two fully connected layers. Finally, the 

obtained weights s  with the attention mechanism are multiplied with the channels in the input 

Y  to generate the final output. 

2.6 Loss Function 

Given a training data set to train the proposed model, we use a multitasking loss function 

which contains classification and regression. In order to classify different road damage types, 

we define the classification loss function as 
cl s

L  , as shown in (6). 

          ( )* *, l og
cl s j j j j

L p p p p= −  

 

(6) 

 

In addition, we define the regression loss function as 
r eg

L  in order to make the positioning 

of the detection bounding box closer to the real bounding box,  as shown in (7). 

( ) ( )* *, 1reg j j j jL t t smoothL t t= −    (7) 

Finally, the total loss is given by 
cl s

L  and 
r eg

L  , as shown in (8). 
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where j   represents the index of an anchor in a mini-batch, 
j

p  indicates the predicted 

probability of anchor being an object region. The ground-truth label is denoted by  
*

j
p , 1 for 

positive and 0 for negative. Girshick [16] defined the predicted box 
j

t   and the ground-truth 

box  
*

j
t . In (8),  ( )*,

cl s j j
L p p  and  ( )* *,

j r eg j j
p L t t  are normalized with  

cl s
N , 

r eg
N , and a 

balancing weight   , respectively. The function of  1smoot hL  is defined as shown in (9).  
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20.5 , 1

1
0.5,

x if x
smoothL x

x others

 
= 

−

 (9) 

 

The proposed method algorithm is shown in Algorithm 1. 

 
Algorithm 1: Road damage detection and classification based on Multi-level Feature 

Pyramids 

Input:  X , X represents road image 

Step 1: VGG16 creates multi-layer feature of input image, 

 
 1 2 3 4 5

, , , ,F F F F F F= .  

j
F  represents the layer of VGG16, where j  represents the j t h−  layer. 
 
Step 2: Fuse the part of multi-layer features by FFM1 to generate the base feature,

 
( )4 5

1 ,Base FFM F F= . 

 

Step 3: Use TUMs to obtain the multi-scale feature. Input the base feature into the first 

TUM, in TUMs, the feature layer of input is compressed constantly and then upsampled 

continuously to obtain six valid feature layers with different scale feature. Of these, fuse 

the largest valid feature layer of this six and the base feature, then input the fused feature 

into the next TUM. repeat the same operation from the second TUM to eighth TUM. 

 

Step 4: SFAM adds the attention mechanism to the six valid feature layers generated by 

TUMs. 

 

Step 5: For these valid feature layers with attention mechanism, they are convoluted 

twice, The first convolution predict the variation of each prior bounding box at each grid 

point of the feature layer. The second convolution predict the type of each prediction 

bounding box at each grid point of the feature layer. 

 

Output: Output the road damage bounding box and the type of damage according to these 

prior bounding box. 

3. Experiments and Result 

In this section, we show the details of the implementations and design of the ablation 

experiments. We also use the same dataset in different methods and compared the results. 

Section 3.1 introduces the implementation details, 3.2 introduces the datasets, 3.3 introduces 

the evaluation criteria, 3.4 introduces the ablation experiments, and 3.5 introduces the AP and 
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mAP of the detecting result. 

3.1 Implementations Details 

Our experiment was run with Keras v2.1.5, the  hardware environment was CUDA 10.0.13 

and cuDNN 7.4.1. The GPU used was NVIDIA GeForce RTX 2070 on Windows 10 with 

16GB memory. 

In our method, the original images are resized to (800, 800, 3) and the resized images are 

input to the backbone network. In VGG16, we removed all fully connected layers. We extract 

the fourth and fifth layers of VGG16 and fuse them to form a base feature. This base feature is 

used in the MLFPN. In the MLFPN, TUM extracts the features in a U-shape feature 

compression and then up-sample for feature fusion in the TUM. We can obtain six valid 

feature layers using TUM. We then take out the (50, 50, 128) feature layer from the six valid 

feature layers and fuse it with the base feature extracted by FFM1, and output a (50, 50, 256) 

enhanced fused feature layer. At the same time, the enhanced fused feature layer from FFM2 

can be passed into the TUM again for U-shaped feature extraction. The six feature layers from 

the TUM are attached to an attention mechanism to adjust the layer weight. Finally, these valid 

feature layers and attention mechanism are used to predict the result. 

3.2 Datasets 

We use 7240 images of damaged road as the datasets; as introduced in Microsoft coco [17], all 

images were photographed by a vehicle-mounted smartphone. There are nine types of damage 

labeled in the datasets. In Fig. 6, we show some examples of the eight common damage types. 

Table 1 shows the road damage types in our data set and their definitions. 

 

    
   (a)                             (b)                                (c)                              (d) 

 

    
 (e)                              (f)                               (g)                               (h) 

 

Fig. 6.  Examples of each damage type in the dataset. (a) D00, (b) D01, (c) D10, (d) D11, (e) D20,  

(f) D40, (g) D43, and (h) D44 
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Table 1. Road damage types in our data set and their definitions 

Damage type 
Class 

name 
Detail 

Crack 

Linear 

crack 

Longitudinal 
D00 Wheel mark part 

D01 Construction joint part 

Lateral 
D10 Equal interval 

D11 Construction joint part 

Alligator crack D20 Partial pavement, overall pavement 

Other corruption 

D40 Rutting, bump, pothole, separation 

D43 Crosswalk blur 

D44 White line blur 

 

The datasets are divided into training set and testing set in a ratio of 7:3, that means 5068 of 

these images are used for training and the other 2172 images are used for testing. In addition, 

we take 10% of the training set as the validation set. 

3.3 Evaluation Criteria 

We chose mAP (mean Average Precision) as a measure of detection accuracy in object 

detection. As shown in (10)-(12). 

 

( )
1

n

i i
AP

mAP
n

==


 
(10) 

 

( )
( )1 1

m n j

ij i

i

P
AP

m

= =

=
 

 
(11) 

i

i

i

T
P

S
=  (12) 

where ( )
iAP   refers to the average precision of one road damage type, 

j

i
P  refers to the 

precision of the i t h−  category in the j t h−  image, n   refers to the number of categories 

and m  refers to the number of images. In (12),  
i

T  refers to the number of correctly detected 

objects in one category in a picture, and  
i

S  refer to the total number of categories in a picture. 

3.4 Ablation Experiments 

We ran a number of ablations to analyze Multi-level Feature Pyramids. The results are shown 

in Table 2 and discussed in detail below. 
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Table 2. The value of AP and mAP on Multi-level Feature Pyramids with different fusion layers of 

VGG16 

Layer of VGG16 

AP (%) 
mAP 

(%) 
D00 D01 D10 D11 D20 D40 D43 D44 

VGG:4,5 75.44 88.88 26.8 9.24 82.15 63.66 91.78 90.08 63.96 

VGG:3,5 41.24 64.83 15.02 5.2 59.47 8.5 69.93 67.14 41.41 

VGG:3,4,5 39.19 63.19 16.33 4.24 52.23 1.01 62.38 62.84 37.68 

VGG:1-5 11.45 43.78 6.38 1.14 44.19 0.98 59.35 49.57 27.11 

 

Since shallow feature layers contain rich information but the features are not obvious 

enough, and deep feature layers are more obvious but contain too little information, we 

selected multiple layers to fuse. In the ablation experiments, we selected combinations of 

layers 4 and 5; layers 3 and 5; layers 3, 4 and 5, and layers 1-5 of VGG16. Using the same 

dataset and the same environment, our experiments demonstrate that the first method, with 

layers 4 and 5 of VGG16, achieved the best performance. 

The proposed method yields excellent detection results after training with a large dataset. 

The result of the detection shows the damage labeled with a bounding box in the image. 

Detecting results of eight damage types using the proposed method are shown in Fig. 7. 

 

    
 

    
Fig. 7. The result of detection; detecting result (blue) and ground truth (green) 

 

3.5 AP and mAP of Detecting Result 

We used Multi-level Feature Pyramids, RetinaNet and YOLOv3 [18] trained on the same 

dataset. We then compared AP values and mAP values obtained from different methods, as 

presented in Fig. 8 and Fig. 9. 
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Fig. 8.  AP value of different Damage Types 

 

 
Fig. 9.  mAP value of different methods 

In Fig. 8 and Fig. 9, the “D43” and “D44” cracks have the highest AP value. The “D01” 

and “D20” cracks also demonstrate good performance. We believe this is because these four 

types of crack have more samples in the training dataset. Although “D30” had few samples, 

Multi-level Feature Pyramids detected “D30” cracks with a 47.62% AP value, while 

RetinaNet and YOLOv3 could not detect “D30” cracks. Our method can detect types with few 

samples due to its multi-level and multi-scale structure. In addition, the attention mechanism 

makes the detection more accurate, allowing our method to achieve the highest mAP value. 

4. Conclusion 

In this paper, we proposed a method using Multi-level Feature Pyramids in road damage 

detection. We selected 70% of the dataset for training and the remaining 30% for testing. In 

addition, we took 10% of the training set as the validation set. To achieve the better results, we 

performed ablation experiments to evaluate which layer of VGG16 to choose. The ablation 

experiments demonstrated that layers 4 and 5 of VGG16 achieve the best performance. We 
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evaluated the detecting results by comparing the AP and mAP values obtained from three 

different methods. Our method achieved the mAP of 63.96, which is the highest value among 

the evaluated methods. We also compare the images of the detecting result, which demonstrate 

that our method can also achieve excellent performance in small target detecting. However, 

the proposed method is still not fast enough in detection, it is not suitable for real-time tasks. In 

future work we will simplify the network framework to improve the detection speed. 
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