Browse > Article
http://dx.doi.org/10.1016/j.net.2021.01.030

State-of-the-art progress of gaseous radiochemical method for detecting of ionizing radiation  

Lebedev, S.G. (Institute for Nuclear Research RAS 60thOctober Anniversary)
Yants, V.E. (Institute for Nuclear Research RAS 60thOctober Anniversary)
Publication Information
Nuclear Engineering and Technology / v.53, no.7, 2021 , pp. 2075-2083 More about this Journal
Abstract
The article provides a review of the research results obtained during of more than 20 years concerning using the gaseous radiochemical method (GRCM) for detecting of ionizing radiation. This method based on threshold nuclear reactions with production of radioactive noble gas which does not interact with the materials of gaseous tract. The applications of GRCM in the diagnostics of neutrinos, neutrons, charged particles, thermonuclear plasma thermometry, and the study of the structure and dynamics of astrophysical objects, position-sensitive dosimetry of neutron targets with accelerator driving, spatial distribution of the fast neutron flux density in a nuclear reactor allowing the transformation of longitudinal coordinate of neutron flux distribution into a temporal distribution of the radiochemical gas decay counting rate ("barcode" semblance) and measurement of bombarding particles spectra are described. Experimental testing of the described technologies was made on the neutron target driven with the linear proton accelerator of Institute for Nuclear Research of Russian Academy of Sciences (INR RAS).
Keywords
Gaseous radiochemical detector; Ionizing radiation; Thermonuclear plasma thermometry; Study of the structure of astrophysical objects; Measuring spectra of bombarding particles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Anselmann, et al., GALLEX results from the first 30 solar neutrino runs, Phys. Lett. B327 (1994) 377-385.   DOI
2 E.A. Koptelov, S.G. Lebedev, N.M. Sobolevsky, et al., Radiation damage parameters for modeling of FRM irradiation conditions at the RADEX facility of INR RAS, J. Nucl. Mater. 307 (2002) 1042-1046.   DOI
3 S.G. Lebedev, V.E. Yants, High-speed gas neutron detector for thermometry of thermonuclear plasma, Nucl. Instrum. Methods Phys. Res. A945 (2019), 162633.
4 O.K. Manuel, G. Hwaung, Solar abundances of the elements, Meteoritics 18 (1983) 209-222.   DOI
5 R.C. Lin, S. Krucker, G.J. Hurford, D.M. Smith, H.S. Hudson, G.D. Holman, RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare, Astrophys. J. Lett. 595 (2003) L69-L75.   DOI
6 T. Sako, K. Watanabe, Y. Muraki, Y. Matsubara, H. Tsujihara, M. Yamashita, Long-lived solar neutron emission in comparison with electron-produced radiation in the 2005 September 7 solar flare, Astrophys. J. Lett. 651 (1) (2006) L69-L77.   DOI
7 N. Grevesse, P. Scott, M. Asplund, A.J. Sauval, The elemental composition of the Sun-III. The heavy elements Cu to Th, Astron. Astrophys. 573 (2015) A27-A33.   DOI
8 M.B. Kallenrode, Current views on impulsive and gradual solar energetic particle events, J. Phys. G 29 (2003) 965-971.   DOI
9 S.G. Lebedev, V.E. Yants, Radiochemical detector of fast neutron flux density, Patent of Russian Federation 2 (2016), 620 196.
10 D.N. Abdurashitov, E.A. Koptelov, S.G. Lebedev, V.E. Yants, A gaseous radiochemical neutron monitors, Instrum. Exp. Tech. 47 (2004) 294-299.   DOI
11 E.A. Koptelov, S.G. Lebedev, V.E. Yants, Radiochemical method for monitoring of fast neutron flux, Patent of Russian Federation 2 (2006) 286-586.
12 S.G. Lebedev, V.E. Yants, Radiochemical detector of spatial distribution of neutron flux density in nuclear reactor, Nucl. Instrum. Methods Phys. Res. A916 (2019) 83-86.
13 V.N. Gavrin, V.N. Kornaukhov, V.E. Yants, Fast Neutron Flux Measurement in the Low-Background Laboratory of GTNT, Preprint INR AN USSR. П-703, Moscow, 1991 (in Riussian).
14 H. Brysk, Fusion neutron energies and spectra, Plasma Phys. 15 (1973) 611-615.   DOI
15 M. Cribler, B. Pichard, J.P. Soirat, M. Spiro, T. Stolarczyk, C. Tao, R. Wink, The neutron induced background in GALLEX, Astropart. Phys. 4 (1995) 23-32.   DOI
16 E.A. Koptelov, S.G. Lebedev, V.A. Matveev, et al., Computer and experimental modeling of target performance in particle beams and fusion or fission environments, Nucl. Instrum. Methods A480 (2002) 137-155.
17 A.V. Krasilnikov, V.N. Amosov, P. Van Belle, et al., Study of d-t neutron energy spectra at JET using natural diamond detector, Nucl. Instrum. Methods A476 (2002) 500-505.
18 R.J. Murphy, R. Ramaty, B. Kozlovsky, Solar abundances from gamma-ray spectroscopy: comparisons with energetic particle, photospheric, and coronal abundances, AIP Conference Proceedings of American Institute of Physics 232 (1991) 439-444.
19 L.V. Kravchuk, INR proton Linac operation and applications, Nucl. Instrum. Methods Phys. Res. 562 (2006) 932-934.   DOI
20 C.R. Cowley, W.P. Bidelman, S. Hubrig, G. Mathys, D.J. Bord, On the possible presence of promethium in the spectra of HD 101065 (Przybylski's star) and HD 965, Astron. Astrophys. 419 (2004) 1087-1093.   DOI
21 P. Scott, N. Grevesse, M. Asplund, A.J. Sauval, K. Lind, Y. Takeda, W. Hayek, The elemental composition of the Sun-I. The intermediate mass elements Na to Ca, Astronomy & Astrophysics 573 (...) (2015) A25-A31.   DOI
22 E.A. Koptelov, S.G. Lebedev, N.M. Sobolevsky, et al., Prospect for study of radiation damage at RADEX-15, radiation experiment facility, based on the beam stop of Moscow Meson Factory, J. Nucl. Mater. 233-237 (1996) 1552-1555.   DOI
23 M. Cribier, B. Pichard, J.P. Soirat, M. Spiro, T. Stolarczyk, C. Tao, D. Vignaud, Radiochemical measurement of fast neutrons using a Ca(NO3)2 aqueous solution, Nucl. Instrum. Methods Phys. Res. A365 (1995) 533-541.
24 S.G. Lebedev, S.V. Akulinichev, A.S. Iljinov, V.E. Yants, A gaseous radiochemical method for registration of ionizing radiation and its possible applications in science and economy, Nucl. Instrum. Methods Phys. Res. A561 (2006) 90-99.
25 I.R. Barabanov, V.N. Gavrin, G.T. Zatsepin, Improving the accuracy of activation analysis using a low-background detector, Sov. Atom. Energy 37 (1974) 503-504.
26 R. Ramaty, R.E. Lingenfelter, in: R.E. Williams, M. Livio (Eds.), Astrophysical Gamma-ray Emission Lines, Analysis of Emission Lines, Cambridge Univ. Press, Cambridge, 1995, p. 180.
27 I.R. Barabanov, V.N. Gavrin, G.T. Zatsepin, I.V. Orekhov, E.A. Yanovich, Radiochemical detector of low-intensity fast neutrons, Sov. Atom. Energy 47 (1979) 856-857.   DOI