• 제목/요약/키워드: experimental analysis

검색결과 23,691건 처리시간 0.05초

Flexural behaviour of reinforced concrete beams with silica fume and processed quarry fines

  • Priya, T. Shanmuga;Senthilkumar, R.
    • Advances in concrete construction
    • /
    • 제10권2호
    • /
    • pp.161-169
    • /
    • 2020
  • This paper studies the influence of silica fume and Processed Quarry Fines (PQF) on the flexural behaviour of the reinforced concrete beams by experimental as well as numerical studies. The study has been shown that the incorporation of PQF can significantly increase the stiffness and the flexural strength of reinforced HPC beams. Also, the ultimate strength of specimens prepared with the 10% silica fume and 100% PQF are higher compared to conventional reinforced concrete specimen. Numerical analysis is performed to find the ultimate strength of HPC beams to compare with experimental results. Nonlinear behaviour of steel reinforcing bars and plain concrete is simulated using appropriate constitutive models and experimental results. The results indicate that the ultimate strength, deformed shape and crack patterns of reinforced HPC beams obtained through the Finite Element Analysis (FEA) are confirming with the experimental results.

Foundation Fieldbus에서 긴급데이터의 지연시간 성능해석 및 실험적 검증 (Delay Analysis of Urgent Data in the Foundation Fieldbus and Experimental Verification)

  • 홍승호;손병관
    • 제어로봇시스템학회논문지
    • /
    • 제9권7호
    • /
    • pp.569-576
    • /
    • 2003
  • The data link layer of Foundation Fieldbus provides both token-passing and scheduling services for periodic, time-critical and time-available data. This study developed an analytical model that evaluates the delay performance of urgent data when the data link layer of Foundation Fieldbus provides token-passing service. The validity of analytical model is verified using an experimental model that consists of network interface boards of Foundation Fieldbus. Comparison of analytical and experimental models shows that the analytical model can be utilized in the approximate analysis of the delay characteristics of time-critical data in the Foundation Fieldbus. The analytical model can also be used in the basic design stage of Foundation Fieldbus network system.

Experimental Modal Analysis of Machining Centers

  • Guoyi Ji;Park, Dong-Keun;Chung, Won-Jee;Lee, Choon-Man
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.82-87
    • /
    • 2004
  • Experimental modal analysis is an effective tool to investigate the dynamic behavior of machining centers. This paper presents the measurement system and experimental investigation on the modal analysis of machining centers. The modal analysis shows the weak part of the machining center. An important local model of spindle in our experiment, which influences the dynamics of machining process, is proposed in this paper. The results provide the foundation of structure modification for good dynamic behaviors.

  • PDF

연성 평판 진동에 대한 파워흐름해석법의 실험적 연구 (Experimental Study On Power Flow Analysis of Vibration of a Coupled Plate)

  • 이규형;길현권;황성국;홍석윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.797-800
    • /
    • 2006
  • The power flow analysis(PFA) can be effectively used to predict structural vibration in medium-to-high frequency ranges. In this paper, vibration experiment has been performed to observe the analytical characteristics of the power flow analysis of the vibration of a plate. In the experiment, the loss factor of the plate and the input mobility at a source point have been measured. The data for the loss factor has been used as the input data to predict the vibration of the plate with PFA. The frequency response functions have been measured over the surface of the plate. The comparison between the experimental results and the predicted results for the frequency responsefunctionshasbeenperformed.

  • PDF

Numerical Analysis for Prediction of Fatigue Crack Opening Level

  • Choi, Hyeon Chang
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.1989-1995
    • /
    • 2004
  • Finite element analysis(FEA) is the most popular numerical method to simulate plasticity-induced fatigue crack closure and can predict fatigue crack closure behavior. Finite element analysis under plane stress state using 4-node isoparametric elements is performed to investigate the detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The mesh of constant size elements on the crack surface can not correctly predict the opening level for fatigue crack as shown in the previous works. The crack opening behavior for the size mesh with a linear change shows almost flat stress level after a crack tip has passed by the monotonic plastic zone. The prediction of crack opening level presents a good agreement with published experimental data regardless of stress ratios, which are using the mesh of the elements that are in proportion to the reversed plastic zone size considering the opening stress intensity factors. Numerical interpolation results of finite element analysis can precisely predict the crack opening level. This method shows a good agreement with the experimental data regardless of the stress ratios and kinds of materials.

회전구조물의 진동 해석 및 실험 (Vibration Analysis and Experimental Study for Rotating Sturctures)

  • 박정훈;유홍희
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.272-280
    • /
    • 1997
  • Comparative study on the analysis and experiment for the vibration of a rotating cantilever structure was made in this paper. Analysis results were obtained by using the modeling method which was developed in the previous work. The cross-section thickness variation due to the sensor attachment was additionally considered. In order to verify the accuracy of the analysis results, exerimental results were obtained. The analysis and experimental results were found to be in a good agreement. It was also shown that the aerodynamic and cross-section thickness variation effects significantly influenced the dynamic characteristics of the rotating structure.

Predictions on the Internal Loads and Structural Deflection in a Full-scale Experimental Bearingless Rotor

  • Eun, WongJong;Ryu, HanYeol;Shin, SangJoon;Kee, YoungJung;Kim, Deog-Kwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.110-122
    • /
    • 2015
  • In this paper, the unsteady aerodynamics and blade structural dynamics of an experimental bearingless rotor were analyzed. Due to the multiple load path and nonlinear behavior of a bearingless rotor, sophisticated structural modeling and structural-aerodynamic coupled analysis is required. To predict the internal load and deformation of an experimental bearingless rotor, trim analysis was implemented. The results showed good agreement when compared with those predicted by CAMRAD II the rotorcraft comprehensive analysis. It is possible to extend the present structural-aerodynamic combined analysis to further advanced configurations of the bearingless rotor in the future.

다자유도 곡선맞춤법을 이용한 감쇠보 모델의 실험 진동해석 (Experimental Vibration Analysis of Damped Beam Model Using Multi-degree Curve Fitting Method)

  • 민천홍;배수룡;박한일
    • 한국해양공학회지
    • /
    • 제22권1호
    • /
    • pp.70-74
    • /
    • 2008
  • It is important to reduce the vibration and noise of submarines and ships. For the purpose of noise reduction, various researches are actively being conducted on the employment of complex structures. However, in the case of numerical analysis for complex structures with damping materials, substantial errors can be generated by the absence of an exact damping model. Thus experimental model analysis is necessary for the verification of a numerical analysis for complex structures. In this research, vibration experiments are conducted in order to ascertain the vibration properties of cantilever beam attached damping materials. First, an initial value is obtained by using a direct linear method. Next, based on this initial value, the exact modal parameters of the cantilever beam are obtained by using the Newton-Raphson method.

Nonlinear finite element analysis of torsional R/C hybrid deep T-beam with opening

  • Lisantono, Ade
    • Computers and Concrete
    • /
    • 제11권5호
    • /
    • pp.399-410
    • /
    • 2013
  • A nonlinear finite element analysis of R/C hybrid deep T-beam with web opening subjected to pure torsion is presented. Hexahedral 8-nodes and space truss element were used for modeling concrete and reinforcement. The reinforcement was assumed perfectly bonded to the corresponding nodes of the concrete element. The constitutive relations for concrete and reinforcement are based on the modified field theory and elastic perfectly plastic. The smear crack approach was adopted for modeling the crack. The torque-twist angle relationship curve based on the finite element analysis was compared to the experimental results. The comparison shows that the curve of torque-twist angle predicted by the nonlinear finite element analysis is linear before cracking and close to the experimental result. After cracking, the curve becomes nonlinear and stiffer compared to the experimental result.

EFFICIENT DESIGN OF CAPACITOR DISCHARGE IMPULSE MAGNETIZER SYSTEM FOR 8-POLE MAGNET

  • Kim, Pill-Soo;Kim, Yong;Baek, Soo-Hyun
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.828-832
    • /
    • 1995
  • This paper describes the efficient design, analysis method and experimental verification of capacitor discharge impulse magnetizer system. A capacitor discharge magnetizer system is used to produce a high current impulse of short duration in this magnetizing fixture. The parasitic resistance and parasitic inductance of the capacitor discharge impulse magnetizer system have been estimated using known air-core test coil. Finite element analysis (using MAXWELL 2-D field simulator) and magnetizing circuit analysis (using SPICE) are also used as part of the design and analysis process of the capacitor discharge impulse magnetizer system. Application study for a magnetizing fixture design is shown. 8-pole magnetizing fixture has been designed and analyzed using finite element analysis. The fixture design for 8-pole magnet are presented along with the experimental results. The experimental results have been achieved using a high-voltage, high-energy capacitor discharge impulse magnetizer and 8-pole iron core fixtures (charging voltage : 2000[V], capacitor bank : 4000[$\mu\textrm{F}$]).

  • PDF