• Title/Summary/Keyword: expected time to signal

Search Result 262, Processing Time 0.026 seconds

Hand Motion Signal Extraction Based on Electric Field Sensors Using PLN Spectrum Analysis (PLN 성분 분석을 통한 전기장센서 기반 손동작신호 추출)

  • Jeong, Seonil;Kim, Youngchul
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.97-101
    • /
    • 2020
  • Using passive electric field sensor which operates in non-contact mode, we can measure the electric potential induced from the change of electric charges on a sensor caused by the movement of human body or hands. In this study, we propose a new method, which utilizes PLN induced to the sensor around the moving object, to detect one's hand movement and extract gesture frames from the detected signals. Signals from the EPS sensors include a large amount of power line noise usually existing in the places such as rooms or buildings. Using the fact that the PLN is shielded in part by human access to the sensor, signals caused by motion or hand movement are detected. PLN consists mainly of signals with frequency of 60 Hz and its harmonics. In our proposed method, signals only 120 Hz component in frequency domain are chosen selectively and exclusively utilized for detection of hand movement. We use FFT to measure a spectral-separated frequency signal. The signals obtained from sensors in this way are continued to be compared with the threshold preset in advance. Once motion signals are detected passing throng the threshold, we determine the motion frame based on period between the first threshold passing time and the last one. The motion detection rate of our proposed method was about 90% while the correct frame extraction rate was about 85%. The method like our method, which use PLN signal in order to extract useful data about motion movement from non-contact mode EPS sensors, has been rarely reported or published in recent. This research results can be expected to be useful especially in circumstance of having surrounding PLN.

A Study on an Analysis and Design of the Internal Structure of Heumgyeonggak-nu

  • Kim, Sang Hyuk;Yun, Yong-Hyun;Ham, Seon Young;Mihn, Byeong-Hee;Ki, Ho-Chul;Yoon, Myung-Kyoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.171-182
    • /
    • 2017
  • In this study, the internal structure of a Heumgyeonggak-nu (欽敬閣漏) was designed, and the power transmission mechanism was analyzed. Heumgyeonggak-nu is an automated water clock from the Joseon Dynasty that was installed within Heumgyeonggak (欽敬閣), and it was manufactured in the $20^{th}$ year of the reign of King Sejong (1438). As descriptions of Heumgyeonggak-nu in ancient literature have mostly focused on its external shape, the study of its internal mechanism has been difficult. A detailed analysis of the literature record on Heumgyeonggak-nu (e.g., The Annals of the Joseon Dynasty) indicates that Heumgyeonggak-nu had a three-stage water clock, included a waterfall or tilting vessel (欹器) using the overflowed water, and displayed the time using a ball. In this study, the Cheonhyeong apparatus, water wheel, scoop, and various mechanism wheels were designed so that 16 fixed-type scoops could operate at a constant speed for the water wheel with a diameter of 100 cm. As the scoop can contain 1.25 l of water and the water wheel rotates 61 times a day, a total of 1,220 l of water is required. Also, the power gear wheel was designed as a 366-tooth gear, which supported the operation of the time signal gear wheel. To implement the movement of stars on the celestial sphere, the rotation ratio of the celestial gear wheel to the diurnal motion gear ring was set to 366:365. In addition, to operate the sun movement apparatus on the ecliptic, a gear device was installed on the South Pole axis. It is expected that the results of this study can be used for the manufacture and restoration of the operation model of Heumgyeonggak-nu.

Factors Influencing Crash Severity by the Types of Bus Transportation Services Using Ordered Probit Models (순서형 프로빗 모형을 이용한 버스 운송사업 유형 별 사고심각도 영향요인 분석)

  • YOON, Sangwon;KHO, Seung-Young;KIM, Dong-Kyu
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.1
    • /
    • pp.13-22
    • /
    • 2018
  • Buses, one of the representative public transportation modes, are divided into a vareity of service types according to the purpose of operation, operating distance, and management agencies. Although bus-involved crashes may cause large amount of damage due to the higher number of passengers boarded on a bus, prior research has little focused on crash severity according to bus service types. This study aims to investigate factors influencing crash severity in bus-involved crashes and to present policy implications to reduce crash severity by bus service type. To do this, bus-involved crash data from the Traffic Accident Analysis System (TAAS) during five-year period are used. Ordered probit models for three types of bus service, i.e., city bus, suburban and express buses, and charter buses, are estimated to analyze the factors of accident severity. The results show that there are significant differences of factors affecting crash severity among the types of bus services while speed and road surface influence all the types of buses. In case of local buses, time of day, roadway alignment, and installation of a traffic signal are found to be statistically significant factors. Seat belt and road class have significant effects on injury severity of the intercity and express buses. Chartered buses have time of day, driving experience, seatbelt, traffic signal, and day of week as the significant factors. The results of this study are expected to contribute to the reduction of the crash severity by each bus service type.

Evaluation of Fatigue Damage for Wind Turbine Blades Using Acoustic Emission (음향방출(AE)을 이용한 풍력 블레이드의 피로손상 평가)

  • Jee, Hyun-Sup;Ju, No-Hoe;So, Cheal Ho;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.179-184
    • /
    • 2015
  • In this study, the flap fatigue test of a 48 m long wind turbine blade was performed for 1 million cycles to evaluate the characteristics of acoustic emission signals generated from fatigue damage of the wind blades. As the number of hits and total energy continued to increase during the first 0.6 million cycles, blade damage was constant. The rise-time result showed that the major aspects of damage were initiation and propagation of matrix cracks. In addition, the signal analysis of each channel showed that the most seriously damaged sections were the joint between the skin and spar, 20 m from the connection, and the spot of actual damage was observable by visual inspection. It turned out that the event source location was related to the change in each channel's total energy. It is expected that these findings will be useful for the optimal design of wind turbine blades.

A Study on Implementation of the High Speed Feature Extraction System Based on Block Type Classification (블록 유형 분류 알고리즘 기반 고속 특징추출 시스템 구현에 관한 연구)

  • Lee, Juseong;An, Ho-Myoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.186-191
    • /
    • 2019
  • In this paper, we propose a implementation approach of the high-speed feature extraction algorithm. The proposed method is based on the block type classification algorithm which reduces the computation time when target macro block is divided to smooth block type that has no image features. It is quantitatively identified that occurs at 29.5% of the total image using 200 standard test images with $64{\times}64$ macro block size. This means that within a standard test image containing various image information, 29.5% can reduce the complexity of the operation. When the proposed approach is applied to the Canny edge detection, the required latency of the edge detection can be completely eliminated, such as 2D derivative filter, gradient magnitude/direction computation, non-maximal suppression, adaptive threshold calculation, hysteresis thresholding. Also, it is expected that operation time of the feature detection can be reduced by applying block type classification algorithm to various feature extraction algorithms in this way.

Predicting Raw Material Price Fluctuation Using Signal Approach: Application to Non-ferrous Metals (신호접근법을 이용한 비철금속 상품가격변동 예측모형 연구)

  • Kim, Ji-Whan;Lee, Sang-Ho
    • Economic and Environmental Geology
    • /
    • v.42 no.2
    • /
    • pp.143-152
    • /
    • 2009
  • Recent raw material prices fluctuation has been unexpectedly high and that made Korean economic activities to be depressed. Because most raw material supply in Korea depends upon oversea imports, unexpected raw material price fluctuation affects Korean industrial economies through macroeconomic variables. So Korean government enforces some political measures such as demand management and the supply-security assurance as long-range policies, and reservation and general early warning system as short-range policies. In short-range policies, it is necessary to be expected short term fluctuation. Up to recently, there have been many researches and most of those researches use parametric methods or time series analyses. Because those methods and analyses often generate inadequate relations among variables, it is possible that some consistent variables are left out or the results are misunderstood. This study, therefore, is aim to mitigate those methodological problems and find the relatively appropriate model for economic explanation. So that, in this paper, by using non-parametric signal approach method mitigating some shortages of previous researches and forecasting properly short-range prices fluctuation of non-ferrous materials are presented empirically.

Spatiotemporal Feature-based LSTM-MLP Model for Predicting Traffic Accident Severity (시공간 특성 기반 LSTM-MLP 모델을 활용한 교통사고 위험도 예측 연구)

  • Hyeon-Jin Jung;Ji-Woong Yang;Ellen J. Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.178-185
    • /
    • 2023
  • Rapid urbanization and advancements in technology have led to a surge in the number of automobiles, resulting in frequent traffic accidents, and consequently, an increase in human casualties and economic losses. Therefore, there is a need for technology that can predict the risk of traffic accidents to prevent them and minimize the damage caused by them. Traffic accidents occur due to various factors including traffic congestion, the traffic environment, and road conditions. These factors give traffic accidents spatiotemporal characteristics. This paper analyzes traffic accident data to understand the main characteristics of traffic accidents and reconstructs the data in a time series format. Additionally, an LSTM-MLP based model that excellently captures spatiotemporal characteristics was developed and utilized for traffic accident prediction. Experiments have proven that the proposed model is more rational and accurate in predicting the risk of traffic accidents compared to existing models. The traffic accident risk prediction model suggested in this paper can be applied to systems capable of real-time monitoring of road conditions and environments, such as navigation systems. It is expected to enhance the safety of road users and minimize the social costs associated with traffic accidents.

Development of the Algorithm for Traffic Accident Auto-Detection in Signalized Intersection (신호교차로 내 실시간 교통사고 자동검지 알고리즘 개발)

  • O, Ju-Taek;Im, Jae-Geuk;Hwang, Bo-Hui
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.97-111
    • /
    • 2009
  • Image-based traffic information collection systems have entered widespread adoption and use in many countries since these systems are not only capable of replacing existing loop-based detectors which have limitations in management and administration, but are also capable of providing and managing a wide variety of traffic related information. In addition, these systems are expanding rapidly in terms of purpose and scope of use. Currently, the utilization of image processing technology in the field of traffic accident management is limited to installing surveillance cameras on locations where traffic accidents are expected to occur and digitalizing of recorded data. Accurately recording the sequence of situations around a traffic accident in a signal intersection and then objectively and clearly analyzing how such accident occurred is more urgent and important than anything else in resolving a traffic accident. Therefore, in this research, we intend to present a technology capable of overcoming problems in which advanced existing technologies exhibited limitations in handling real-time due to large data capacity such as object separation of vehicles and tracking, which pose difficulties due to environmental diversities and changes at a signal intersection with complex traffic situations, as pointed out by many past researches while presenting and implementing an active and environmentally adaptive methodology capable of effectively reducing false detection situations which frequently occur even with the Gaussian complex model analytical method which has been considered the best among well-known environmental obstacle reduction methods. To prove that the technology developed by this research has performance advantage over existing automatic traffic accident recording systems, a test was performed by entering image data from an actually operating crossroad online in real-time. The test results were compared with the performance of other existing technologies.

Numerical Modeling of a Short-range Three-dimensional Flash LIDAR System Operating in a Scattering Atmosphere Based on the Monte Carlo Radiative Transfer Matrix Method (몬테 카를로 복사 전달 행렬 방법을 사용한 산란 대기에서 동작하는 단거리 3차원 플래시 라이다 시스템의 수치적 모델링)

  • An, Haechan;Na, Jeongkyun;Jeong, Yoonchan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.59-70
    • /
    • 2020
  • We discuss a modified numerical model based on the Monte Carlo radiative transfer (MCRT) method, i.e., the MCRT matrix method, for the analysis of atmospheric scattering effects in three-dimensional flash LIDAR systems. Based on the MCRT method, the radiative transfer function for a LIDAR signal is constructed in a form of a matrix, which corresponds to the characteristic response. Exploiting the superposition and convolution of the characteristic response matrices under the paraxial approximation, an extended computer simulation model of an overall flash LIDAR system is developed. The MCRT matrix method substantially reduces the number of tracking signals, which may grow excessively in the case of conventional Monte Carlo methods. Consequently, it can readily yield fast acquisition of the signal response under various scattering conditions and LIDAR-system configurations. Using the computational model based on the MCRT matrix method, we carry out numerical simulations of a three-dimensional flash LIDAR system operating under different atmospheric conditions, varying the scattering coefficient in terms of visible distance. We numerically analyze various phenomena caused by scattering effects in this system, such as degradation of the signal-to-noise ratio, glitches, and spatiotemporal spread and time delay of the LIDAR signals. The MCRT matrix method is expected to be very effective in analyzing a variety of LIDAR systems, including flash LIDAR systems for autonomous driving.

Dynamic OD Estimation with Hybrid Discrete Choice of Traveler Behavior in Transportation Network (복합 통행행태모형을 이용한 동적 기.종점 통행량 추정)

  • Kim, Chae-Man;Jo, Jung-Rae
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.6 s.92
    • /
    • pp.89-102
    • /
    • 2006
  • The purpose of this paper is to develop a dynamic OD estimating model to overcome the limitation of depicting teal situations in dynamic simulation models based on static OD trip. To estimate dynamic OD matrix we used the hybrid discrete choice model(called the 'Demand Simulation Model'), which combines travel departure time with travel mode and travel path. Using this Demand Simulation Model, we deduced that the traveler chooses the departure time and mode simultaneously, and then choose his/her travel path over the given situation In this paper. we developed a hybrid simulation model by joining a demand simulation model and the supply simulation model (called LiCROSIM-P) which was Previously developed. We simulated the hybrid simulation model for dependent/independent networks which have two origins and one destination. The simulation results showed that AGtt(Average gap expected travel time and simulated travel time) did not converge, but average schedule delay gap converged to a stable state in transportation network consisted of multiple origins and destinations, multiple paths, freeways and some intersections controlled by signal. We present that the hybrid simulation model can estimate dynamic OD and analyze the effectiveness by changing the attributes or the traveler and networks. Thus, the hybrid simulation model can analyze the effectiveness that reflects changing departure times, travel modes and travel paths by demand management Policy, changing network facilities, traffic information supplies. and so on.