Browse > Article
http://dx.doi.org/10.30693/SMJ.2020.9.4.97

Hand Motion Signal Extraction Based on Electric Field Sensors Using PLN Spectrum Analysis  

Jeong, Seonil (전남대학교 컴퓨터정보통신공학과 대학원)
Kim, Youngchul (전남대학교 컴퓨터정보통신공학과)
Publication Information
Smart Media Journal / v.9, no.4, 2020 , pp. 97-101 More about this Journal
Abstract
Using passive electric field sensor which operates in non-contact mode, we can measure the electric potential induced from the change of electric charges on a sensor caused by the movement of human body or hands. In this study, we propose a new method, which utilizes PLN induced to the sensor around the moving object, to detect one's hand movement and extract gesture frames from the detected signals. Signals from the EPS sensors include a large amount of power line noise usually existing in the places such as rooms or buildings. Using the fact that the PLN is shielded in part by human access to the sensor, signals caused by motion or hand movement are detected. PLN consists mainly of signals with frequency of 60 Hz and its harmonics. In our proposed method, signals only 120 Hz component in frequency domain are chosen selectively and exclusively utilized for detection of hand movement. We use FFT to measure a spectral-separated frequency signal. The signals obtained from sensors in this way are continued to be compared with the threshold preset in advance. Once motion signals are detected passing throng the threshold, we determine the motion frame based on period between the first threshold passing time and the last one. The motion detection rate of our proposed method was about 90% while the correct frame extraction rate was about 85%. The method like our method, which use PLN signal in order to extract useful data about motion movement from non-contact mode EPS sensors, has been rarely reported or published in recent. This research results can be expected to be useful especially in circumstance of having surrounding PLN.
Keywords
Electric field sensor; PLN; Hand motion; Frame extraction; Non-contact mode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fu, B., Kirchbuchner, F., von Wilmsdorff, J. et al. "Performing indoor localization with electric potential sensing," Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 2, pp. 731-746, Feb. 2019.   DOI
2 천우영, 김영철, "주변 전기장 측정센서를 이용한 손동작 신호 검출을 위한 신호처리시스템 연구," 스마트미디어저널, 제6권, 제2호, 26-32쪽, 2017년 2월
3 조정재, 김영철, "전기장 왜란을 이용한 비접촉 스마트 TV 제스처 인식 알고리즘," 멀티미디어학회논문지, 제17권, 제2호, 124-131쪽, 2014년 2월
4 장진수, 김영철, "전위계차센서 기반 스마트TV 제어를 위한 극저주파 전자기간섭 제거 연구," 멀티미디어학회논문지, 제18권, 제3호, 401-407쪽, 2015년 3월
5 장진수, 김영철, "전위계차 센서를 이용한 원격센싱을 위한 ELF 대역 EMI 제거 및 PLN 응용 연구," 스마트미디어저널, 제4권, 제1호, 2015년 3월
6 천우영, 이석현, 김영철, "Labview 기반 EPS 동작 신호 검출 및 분석시스템 구현," 스마트미디어저널, 제5권, 제3호, 25-29쪽, 2016년 9월
7 이정진, 김종호, 김태영, "증강현실 응용을 위한 손끝점 추출과 손 동작 인식 기법," 멀티미디어학회논문지, 제13권, 제2호, 316-323쪽, 2010년 2월
8 김상기, 박건혁, 전석희, 임성훈, 한갑종, 최승문, 최승진, "3차원 가속도 데이타를 이용한 HMM 기반의 동작인식," 정보과학회논문지 : 컴퓨팅의 실제 및 레터, 제15권, 제3호, 216-220쪽, 2009년 3월
9 Plessey E.P.I.C, "Plessey EPIC sensor," Sensor Review, vol. 32, no. 1, Jan. 2012.
10 X. Tand, S. Mandal, "Indoor Occupancy Awareness and Localization Using Passive Electric Field Sensing," IEEE Trans. on Instrumentation and Measurement, vol. 68, no. 11, pp. 4535-4549, 2019.   DOI