• Title/Summary/Keyword: exothermic temperature

Search Result 316, Processing Time 0.028 seconds

Numerical Analysis of Steam-methane Reforming Reaction for Hydrogen Generation using Catalytic Combustion (촉매 연소를 열원으로 한 수증기-메탄개질반응 전산유체해석)

  • Lee, Jeongseop;Lee, Kanghoon;Yu, Sangseok;Ahn, Kookyoung;Kang, Sanggyu
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • A steam reformer is a chemical reactor to produce high purity hydrogen from fossil fuel. In the steam reformer, since endothermic steam reforming is heated by exothermic combustion of fossil fuel, the heat transfer between two reaction zones dominates conversion of fossil fuel to hydrogen. Steam Reforming is complex chemical reaction, mass and heat transfer due to the exothermic methane/air combustion reaction and the endothermic steam reforming reaction. Typically, a steam reformer employs burner to supply appropriate heat for endothermic steam reforming reaction which reduces system efficiency. In this study, the heat of steam reforming reaction is provided by anode-off gas combustion of stationary fuel cell. This paper presents a optimization of heat transfer effect and average temperature of cross-section using two-dimensional models of a coaxial cylindrical reactor, and analysis three-dimensional models of a coaxial cylindrical steam reformer with chemical reaction. Numerical analysis needs to dominant chemical reaction that are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming(DSR) reaction. The major parameters of analysis are temperature, fuel conversion and heat flux in the coaxial reactor.

Thermodynamic Analysis of DME Steam Reforming for Hydrogen Production (수소제조를 위한 DME 수증기 개질반응의 열역학적 특성)

  • Park, Chan-Hyun;Kim, Kyoung-Suk;Jun, Jin-Woo;Cho, Sung-Yul;Lee, Yong-Kul
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.186-190
    • /
    • 2009
  • This study is purposed to analyze thermodynamic properties on the hydrogen production by dimethyl ether steam reforming. Various reaction conditions of temperatures (300~1500 K), feed compositions (steam/carbon = 1~7), and pressures (1, 5, 10 atm) were applied to investigate the effects of the reaction conditions on the thermodynamic properties of dimethyl ether steam reforming. An endothermic steam reforming competed with an exothermic water gas shift reaction and an exothermic methanation within the applied reaction condition. Hydrogen production was initiated at the temperature of 400 K and the production rate was promoted at temperatures exceeding 550 K. An increase of steam to carbon ratio (S/C) in feed mixture over 1.5 resulted in the increase of the water gas shift reaction, which lowered the formation of carbon monoxide. The maximum hydrogen yield with minimizing loss of thermodynamic conversion efficiency was achieved at the reaction conditions of a temperature of 900 K and a steam to carbon ratio of 3.0.

Uncontrolled Regeneration Characteristics of SiC DPFs using DPF Test Rig (DPF 테스트 리그를 이용한 SiC DPF의 이상연소 특성)

  • Oh, Kwang-Chul;Lee, Chun-Hwan;Cho, Taik-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.80-86
    • /
    • 2008
  • Uncontrolled regeneration characteristics of two different type SiC DPFs(diesel particulate filters) were investigated by DPF test rig devised to facilitate DPF evaluation, especially for regeneration and MSL(maximum soot loading) test similar to engine dynamometer test. In order to estimate the limits of maximum filter temperature and temperature gradient causing filter fracture, such as crack or whitening, the temperature distributions inside the filter were measured by thermocouples. The maximum filter temperature was observed near the rear plane of central filter region due to heat accumulation by exothermic reaction of PM but the maximum temperature gradient occurred at the boundary of high filter temperature. These two parameters induced the different SiC DPFs to fracture with different modes, whitening and crack.

INTRAPULPAL TEMPERATURE CHANGE OF GLASS IONOMER ACCORDING TO LIGHT CURING INTENSITY AND CURING TIME (광중합기의 광도와 시간에 따른 글래스 아이오노머의 치수내 온도변화)

  • 김희량;이형일;이광원;이세준
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.387-392
    • /
    • 2001
  • When cavity floor is near the pulp, polymerization of light-activated restorations results in temperature increase. This temperature increase cause by both the exothermic reaction process and the energy absorbed during irradiation. Therefore instating base is required. Most frequently used insulating base is glass ionmer. The purpose of this study was to evaluate intrapulpal temperature changes of glass ionomer according to various curing intensity and curing time. Caries and restoration-free mandibular molars extracted within three months were prepared Class I cavity of 3$\times$6mm with high speed handpiece. 1mm depth of dentin was evaluated with micrometer in mesial and distal pulp horns. Pulp chambers were filled with 37.0$\pm$0.1$^{\circ}C$ water to CEJ. Chromium-alumina thermocouple was placed in pulp horn for evaluating of temperature changes. glass ionomer material was placed in 2mm. total curing time was 40s: continuous 40s, intermittent 20s, intermittent 10s. Glass ionomer material was cured with 300mW/$\textrm{cm}^2$, 550mW/$\textrm{cm}^2$ light curing unit. The results were as follows : 1. Temperature in pulp increased as curing unit power is increased. 2. Temperature in pulp more increased continuous emission than intermittent emission.

  • PDF

Numerical analysis of the coupled heat and mass transfer phenomena in a metal hydride hydrogen storage reactor(I) - Model development of analyzation for hydrogen absorption reaction using the $LaNi_5$ bed (금속수소화물 수소저장 용기 내부의 열 및 물질전달 현상에 대한 수치적 연구(I) - $LaNi_5$ 베드를 이용한 수소 흡장반응 해석 모델 개발)

  • Nam, Jinmoo;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.225.1-225.1
    • /
    • 2010
  • Within recent years attention has been focused on the method of hydrogen storage using metal hydride reactor due to its high energy density, durability, safety and low operating pressure. In this paper, a numerical study is carried out to investigate the coupled heat and mass transfer process for absorption in a cylindrical metal hydride hydrogen storage reactor using a newly developed model. The simulation results demonstrate the evolution of temperature, equilibrium pressure, H/M atomic ratio and velocity distribution as time goes by. Initially, hydrogen is absorbed earlier from near the wall which sets the cooling boundary condition owing to that absorption process is exothermic reaction. Temperature increases rapidly in entire region at the beginning stage due to the initial low temperature and enough metal surface for hydrogen absorption. As time goes by, temperature decreases slowly from the wall region due to the better heat removal. Equilibrium pressure distribution appears similarly with temperature distribution for reasons of the function of temperature. This work provides a detailed insight into the mechanism and corresponding physicochemical phenomena in the reactor during the hydrogen absorption process.

  • PDF

A study on the Temperature Profile with combustion conditions change for the Optimum drive of Plate type Hydrogen Generation Sytem (평판형 수소생산시스템의 최적 운전조건을 위한 연소조건별 분위기 온도 연구)

  • Heo, Su-Bin;Park, Jae-Min;Yoon, Bong-Seock;Lee, Do-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.238-243
    • /
    • 2012
  • The purpose of this study is to search the temperature-rise time conditions for adequate reforming temperature region of hydrogen generation system. And we measured theexhaust gas at the exit of that system in order to know the combustion state of hydrogen generation system's combustor. We found the optimum condition of heat supply and temperature-rise time at well burned state. And the results were nearly same when the reactants were entered to each reactors. We will further consider the effects of temperature change near the exothermic reactors and find out hydrogen yield through reforming experiment.

Quality Inspection for Cast-In-Place Concrete with the Device to Record Curing Temperature (양생온도 이력 기록장치를 이용한 현장타설 콘크리트의 품질검사)

  • Cho, Yeong-Kweon;Kim, Kwan-Ho;Kim, Meyong-Won;Lee, Jun-Gu;Yoo, Jung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.351-354
    • /
    • 2005
  • Quality of concrete required to achieve the desired levels of strength and durability depend on the effectiveness of the curing method. During cold weather, the concrete at the time of placement should be taken to prevent damage to concrete due to freezing. Since the cement-water reaction is exothermic by nature, the temperature within mass concrete can be quite high. The temperature control for massive sections should be taken more careful than for shallow sections. However, in the constructing hydraulic structures, the curing temperature control for concrete had been very difficult to be taken in a proper way because the conditions constructing them are poor and contractors are small enterprises. For several. reasons including above, Rural Research Institute has developed a device and program for recording curing temperature history in cold weather concrete and mass. As there are two major advantages of the device, namely cheapness and availability, this program and device has been recommended to the use of curing temperature control in cold weather concrete and mass.

  • PDF

Characteristics of Spontaneous Combustion of Various Fuels for Coal-Fired Power Plant by Carbonization Rank

  • Kim, Jae-kwan;Park, Seok-un;Shin, Dong-ik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.83-92
    • /
    • 2019
  • Spontaneous combustion propensity of various coals of carbonization grade as a pulverized fuel of coal-fired power plant has been tested from an initial temperature of $25^{\circ}C$ to $600^{\circ}C$ by heating in an oven with air to analyze the self-oxidation starting temperature. These tests produce CPT (Cross Point Temperature), IT (Ignition temperature), and CPS (Cross Point Slope) calculated as the slope of time taken for a rapid exothermic oxidation reaction at CPT base. CPS shows a carbonization rank dependence whereby wood pellet has the highest propensity to spontaneous combustion of $20.995^{\circ}C/min$. A sub-bituminous KIDECO coal shows a CPS value of $15.370^{\circ}C/min$, whereas pet coke has the highest carbonization rank at $2.950^{\circ}C/min$. The nature of this trend is most likely attributable to a concentration of volatile matter and oxygen functional groups of coal surface that governs the available component for oxidation, as well as surface area of fuel char, and constant pressure molar heat.

Effect of Boundary Temperature Distributions on the Outlet Gas Composition of the Cylindrical Steam Reformer (원통형 수증기 개질기의 경계 온도 분포에 따른 개질 가스 조성 변화)

  • Kim, Seok;Han, Hun-Sik;Kim, Seo-Young;Hyun, Jae-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.383-391
    • /
    • 2011
  • Numerical simulations have been conducted for the cylindrical steam reformer having various boundary temperature distributions. $CH_4$, $H_2O$, CO, $H_2$ and $CO_2$ are often generated or destroyed by the reactions, namely the Steam Reofrming(SR) reaction, the Water-Gas Shift (WGS) reaction and the Direct Steam Reforming(DSR) reaction. The SR and the DSR reactions are endothermic reactions, and the WGS reaction is an exothermic reaction. The rate of reactions can be slightly controlled by artificially given boundary temperature distributions. Therefore, the component ratio of the gases at the outlet are different for various boundary temperature distributions, namely the constant, cubic and linear distributions. Among these distributions, the linear temperature distribution is outstanding for efficient hydrogen production of the steam reformer.

Effect of Room-temperature, Calcined Eggshell Reactants on Synthesis of Hydroxyapatite

  • Kang, Tea-Sung;Pantilimon, Cristian M.;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.204-208
    • /
    • 2015
  • Synthesis of hydroxyapatite (HA) was attempted through a room-temperature reaction of calcined eggshell with phosphoric acid. Ball-milled, calcined eggshell powder, which has a specific surface area of $31.6m^2/g$, was mixed with various concentrations of phosphoric acid at room temperature. The mixtures showed high reactivity and a vigorous exothermic reaction ; the reacted samples showed both $Ca(OH)_2$ and $CaHPO_4$ crystal phases. After heating at temperatures above $400^{\circ}C$, an HA crystal phase was observed in all samples. The calcined eggshell showed a pure CaO single phase, while the $Ca(OH)_2$ phase was only observed in the wet, ball-milled calcined powder. The degree of formation of the HA crystal phase increased as the phosphoric acid concentration and the heating temperature were increased. A mixture with 50 wt% phosphoric acid concentration showed a well-developed HA crystal phase after heat treatment at $800^{\circ}C$, while the formation of a more intensive amorphous phase was observed in the products of the room-temperature reaction.