• Title/Summary/Keyword: exosomes

Search Result 68, Processing Time 0.031 seconds

Attenuation of Experimental Autoimmune Hepatitis in Mice with Bone Mesenchymal Stem Cell-Derived Exosomes Carrying MicroRNA-223-3p

  • Lu, Feng-Bin;Chen, Da-Zhi;Chen, Lu;Hu, En-De;Wu, Jin-Lu;Li, Hui;Gong, Yue-Wen;Lin, Zhuo;Wang, Xiao-Dong;Li, Ji;Jin, Xiao-Ya;Xu, Lan-Man;Chen, Yong-Ping
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.906-918
    • /
    • 2019
  • MicroRNA-223-3p (miR-223-3p) is one of the potential microRNAs that have been shown to alleviate inflammatory responses in pre-clinical investigations and is highly encased in exosomes derived from bone mesenchymal stem cells (MSC-exosomes). MSC-exosomes are able to function as carriers to deliver microRNAs into cells. Autoimmune hepatitis is one of the challenging liver diseases with no effective treatment other than steroid hormones. Here, we examined whether MSC-exosomes can transfer miR-223-3p to treat autoimmune hepatitis in an experimental model. We found that MSC-exosomes were successfully incorporated with miR-223-3p and delivered miR-223-3p into macrophages. Moreover, there was no toxic effect of exosomes on the macrophages. Furthermore, treatments of either exosomes or exosomes with miR-223-3p successfully attenuated inflammatory responses in the liver of autoimmune hepatitis and inflammatory cytokine release in both the liver and macrophages. The mechanism may be related to the regulation of miR-223-3p level and STAT3 expression in the liver and macrophages. These results suggest that MSC-exosomes can be used to deliver miR-223-3p for the treatment of autoimmune hepatitis.

Exosome-derived microRNA-29c Induces Apoptosis of BIU-87 Cells by Down Regulating BCL-2 and MCL-1

  • Xu, Xiang-Dong;Wu, Xiao-Hou;Fan, Yan-Ru;Tan, Bing;Quan, Zhen;Luo, Chun-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3471-3476
    • /
    • 2014
  • Background: Aberrant expression of the microRNA-29 family is associated with tumorigenesis and cancer progression. As transport carriers, tumor-derived exosomes are released into the extracellular space and regulate multiple functions of target cells. Thus, we assessed the possibility that exosomes could transport microRNA-29c as a carrier and correlations between microRNA-29c and apoptosis of bladder cancer cells. Materials and Methods: A total of 28 cancer and adjacent tissues were examined by immunohistochemistry to detect BCL-2 and MCL-1 expression. Disease was Ta-T1 in 12 patients, T2-T4 in 16, grade 1 in 8, 2 in 8 and 3 in 12. The expression of microRNA-29c in cancer tissues was detected by quantitative reverse transcriptase PCR (QRT-PCR). An adenovirus containing microRNA-29c was used to infect the BIU-87 human bladder cancer cell line. MicroRNA-29c in exosomes was measured by QRT-PCR. After BIU-87 cells were induced by exosomes-derived microRNA-29c, QRT-PCR was used to detect the level of microRNA-29c. Apoptosis was examined by flow cytometry and BCL-2 and MCL-1 mRNA expressions were assessed by reverse transcription-polymerase chain reaction. Western blotting was used to determine the protein expression of BCL-2 and MCL-1. Results: The expressions of BCL-2 and MCL-1 protein were remarkably increased in bladder carcinoma (p<0.05), but was found mainly in the basal and suprabasal layers in adjacent tissues. The expression of microRNA-29c in cancer tissues was negatively correlated with the BCL-2 and MCL-1. The expression level of microRNA-29c in exosomes and BIU-87 cells from the experiment group was higher than that in control groups (p<0.05). Exosome-derived microRNA-29c induced apoptosis (p<0.01). Although only BCL-2 was reduced at the mRNA level, both BCL-2 and MCL-1 were reduced at the protein level. Conclusions: Human bladder cancer cells infected by microRNA-29c adenovirus can transport microRNA-29c via exosomes. Moreover, exosome-derived microRNA29c induces apoptosis in bladder cancer cells by down-regulating BCL-2 and MCL-1.

Changes in the components of salivary exosomes due to initial periodontal therapy

  • Arisa Yamaguchi;Yuto Tsuruya;Kazuma Igarashi;Zhenyu Jin;Mizuho Yamazaki-Takai;Hideki Takai;Yohei Nakayama;Yorimasa Ogata
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.5
    • /
    • pp.347-361
    • /
    • 2023
  • Purpose: Exosomes are membrane vesicles that are present in body fluids and contain proteins, lipids, and microRNA (miRNA). Periodontal tissue examinations assess the degree of periodontal tissue destruction according to the probing depth (PD), clinical attachment loss (CAL), bleeding on probing, and X-ray examinations. However, the accurate evaluation of the prognosis of periodontitis is limited. In this study, we collected saliva from patients before and after initial periodontal therapy (IPT) and compared changes in the clinical parameters of periodontitis with changes in the components of salivary exosomes. Methods: Saliva was collected from patients with stage III and IV periodontitis at the first visit and post-IPT. Exosomes were purified from the saliva, and total protein and RNA were extracted. Changes in expression levels of C6, CD81, TSG101, HSP70, and 6 kinds of miRNA were analyzed by western blots and real-time polymerase chain reaction. Results: Patients with increased C6 expression after IPT had significantly higher levels of periodontal inflamed surface area (PISA), miR-142, and miR-144 before and after IPT than patients with decreased C6 expression after IPT. Patients with decreased and unchanged CD81 expression after IPT showed significantly higher PD, CAL, and PISA before IPT than after IPT. Patients with decreased and unchanged TSG101 expression after IPT had significantly higher PD before IPT than after IPT. Patients with increased HSP70 expression after IPT had significantly higher PD and PISA before and after IPT than patients with unchanged HSP70 after IPT. The expression levels of miR-142, miR-144, miR-200b, and miR-223 changed with changes in the levels of C6, CD81, TSG101, and HSP70 in the salivary exosomes of periodontitis patients before and after IPT. Conclusions: The expression levels of proteins and miRNAs in salivary exosomes significantly changed after IPT in periodontitis patients, suggesting that the components of exosomes could serve as biomarkers for periodontitis.

Circulating Plasma and Exosomal microRNAs as Indicators of Drug-Induced Organ Injury in Rodent Models

  • Cho, Young-Eun;Kim, Sang-Hyun;Lee, Byung-Heon;Baek, Moon-Chang
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.367-373
    • /
    • 2017
  • This study was performed to evaluate whether microRNAs (miRNAs) in circulating exosomes may serve as biomarkers of drug-induced liver, kidney, or muscle-injury. Quantitative PCR analyses were performed to measure the amounts of liver-specific miRNAs (miR-122, miR-192, and miR-155), kidney-specific miR-146a, or muscle-specific miR-206 in plasma and exosomes from mice treated with liver, kidney or muscle toxicants. The levels of liver-specific miRNAs in circulating plasma and exosomes were elevated in acetaminophen-induced liver injury and returned to basal levels by treatment with antioxidant N-acetyl-cysteine. Circulating miR-146a and miR-206 were increased in cisplatin-induced nephrotoxicity and bupivacaine-induced myotoxicity, respectively. Taken together, these results indicate that circulating plasma and exosomal miRNAs can be used as potential biomarkers specific for drug-induced liver, kidney or muscle injury.

MALDI-MS: A Powerful but Underutilized Mass Spectrometric Technique for Exosome Research

  • Jalaludin, Iqbal;Lubman, David M.;Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • v.12 no.3
    • /
    • pp.93-105
    • /
    • 2021
  • Exosomes have gained the attention of the scientific community because of their role in facilitating intercellular communication, which is critical in disease monitoring and drug delivery research. Exosome research has grown significantly in recent decades, with a focus on the development of various technologies for isolating and characterizing exosomes. Among these efforts is the use of matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS), which offers high-throughput direct analysis while also being cost and time effective. MALDI is used less frequently in exosome research than electrospray ionization due to the diverse population of extracellular vesicles and the impurity of isolated products, both of which necessitate chromatographic separation prior to MS analysis. However, MALDI-MS is a more appropriate instrument for the analytical approach to patient therapy, given it allows for fast and label-free analysis. There is a huge drive to explore MALDI-MS in exosome research because the technology holds great potential, most notably in biomarker discovery. With methods such as fingerprint analysis, OMICs profiling, and statistical analysis, the search for biomarkers could be much more efficient. In this review, we highlight the potential of MALDI-MS as a tool for investigating exosomes and some of the possible strategies that can be implemented based on prior research.

Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes

  • Kim, Min Jae;Jung, Bong-Kwang;Cho, Jaeeun;Song, Hyemi;Pyo, Kyung-Ho;Lee, Ji Min;Kim, Min-Kyung;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.2
    • /
    • pp.147-154
    • /
    • 2016
  • Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.

Canine amniotic membrane derived mesenchymal stem cells exosomes addition in canine sperm freezing medium

  • Mahiddine, Feriel Yasmine;Qamar, Ahmad Yar;Kim, Min Jung
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.268-272
    • /
    • 2020
  • Amniotic membrane stem cells are considered as a good alternative to embryonic stem cells, but their use in clinical studies is still not common. Here, exosomes from canine amniotic membrane mesenchymal stem cells (cAmMSC-exo) were used for dog sperm cryopreservation. Upon cryopreserved straws using cryoprotectant containing 0, 0.5, 1, or 2 ㎍/mL of cAmMSC-exo were thawed, motility and membrane integrity were analyzed. However, results showed no significant differences between the groups. We concluded that cAmMSC-exo with lower than 2 ㎍/mL have no effects on sperm cryopreservation, and further studies to get higher concentrations of cAmMSC-exo should be conducted for clinical application.

Visualization of Extracellular Vesicles of Prokaryotes and Eukaryotic Microbes

  • Kim, Ki Woo
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.96-101
    • /
    • 2018
  • The release of nanoscale membrane-bound vesicles is common in all three domains of life. These vesicles are involved in a variety of biological processes such as cell-to-cell communication, horizontal gene transfer, and substrate transport. Prokaryotes including bacteria and archaea release membrane vesicles (MVs) (20 to 400 nm in diameter) into their extracellular milieu. In spite of structural differences in cell envelope, both Gram-positive and negative bacteria produce MVs that contain the cell membrane of each bacterial species. Archaeal MVs characteristically show surface-layer encircling the vesicles. Filamentous fungi and yeasts as eukaryotic microbes produce bilayered exosomes that have varying electron density. Microbes also form intracellular vesicles and minicells that are similar to MVs and exosomes in shape. Electron and fluorescence microscopy could reveal the presence of DNA in MVs and exosomes. Given the biogenesis of extracellular vesicles from the donor cell, in situ high-resolution microscopy can provide insights on the structural mechanisms underlying the formation and release of microbial extracellular vesicles.

Exosome isolation from hemolymph of white-spotted flower chafer, Protaetia brevitarsis (Kolbe) (Coleoptera: Scarabaeidae).

  • Lee, Seokhyun;Kwon, Kisang;Song, Myung-Ha;Park, Kwan-ho;Kwon, O-Yu;Choi, Ji-young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • Exosomes are homogenous vesicles of 40-100 nm diameter produced endogenously. Exosomes are generated by inward budding into multi-vesicular bodies (MVB) and then released to extracellular space. Exosomes contain various nucleic acid and protein cargoes from their cells of origin and this endosomal cellular molecules are used for intracellular communication and for both promotion and suppression of immune responses. Recently, they are also considered as delivery vehicle for therapeutic proteins due to their characteristics of stability in body fluids and ability for target uptake. Also, they show less immune reactivity because the isolated exosome harboring therapeutic proteins can be from the same host. White-spotted flower chafer, Protaetia brevitarsis is one of the major insect commercially reared in Korea. There are bacterial and fungal pathogens causing diseases in the beetle, and these diseases incur economic loss to the larva-rearing farms. Due to their endosomal cargoes, exosomes are good candidates in use of disease diagnosis. In this study, we isolated insect exosome from the hemolymph of P. brevitarsis, and verified it by analysis of the exosome-specific surface proteins and RNA.

Mesenchymal Stem Cell-derived Exosomes: Applications in Cell-free Therapy (중간엽줄기세포유래 엑소좀: 비세포치료제로서의 활용)

  • Heo, June Seok;Kim, Jinkwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.391-398
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) are an attractive resource for refractory patients because of their anti-inflammatory/immunomodulatory capability and multi-lineage differentiation potential. The transplantation of MSCs has led to positive results in preclinical and clinical application to various diseases, including autoimmune disease, cardiovascular disease, cancer, liver cirrhosis, and ischemic stroke. On the other hand, studies have shown that paracrine factors, not direct cell replacement for damaged cells or tissue, are the main contributors in MSC-based therapy. More recently, evidence has indicated that MSC-derived exosomes play crucial roles in regulating the paracrine factors that can mediate tissue regeneration via transferring nucleic acids, proteins, and lipids to the local microenvironment and cell-to-cell communication. The use of these exosomes is likely to be beneficial for the therapeutic application of MSCs because their use can avoid harmful effects, such as tumor formation involved in cell transplantation. Therefore, therapeutic applications using MSC-derived exosomes might be safe and efficient strategies for regenerative medicine and tissue engineering. This review summarizes the recent advances and provides a comprehensive understanding of the role of MSC-derived exosomes as a therapeutic agent.