• Title/Summary/Keyword: exciton

Search Result 343, Processing Time 0.03 seconds

Comparison of Optical Properties of Ga-doped and Ag-doped ZnO Nanowire Measured at Low Temperature

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.5
    • /
    • pp.262-264
    • /
    • 2014
  • Pristine ZnO, 3 wt.% Ga-doped (3GZO) and 3 wt.% Ag-doped (3SZO) ZnO nanowires (NWs) were grown using the hot-walled pulse laser deposition (HW-PLD) technique. The doping of Ga and Ag in ZnO NWs was observed by analyzing the optical and chemical properties. We optimized the synthesis conditions, including processing temperature, time, gas flow, and distance between target and substrate for the growth of pristine and doped ZnO NWs. The diameter and length of pristine and doped ZnO NWs were controlled under 200 nm and several ${\mu}m$, respectively. Low temperature photoluminescence (PL) was performed to observe the optical property of doped NWs. We clearly observed the shift of the near band edge (NBE) emission by using low temperature PL. In the case of 3GZO and 3SZO NWs, the center photon energy of the NBE emissions shifted to low energy direction using the Burstein Moss effect. A strong donor-bound exciton peak was found in 3 GZO NWs, while an acceptor-bound exciton peak was found in 3SZO NWs. X-ray photoelectron spectroscopy (XPS) also indicated that the shift of binding energy was mainly attributed to the interaction between the metal ion and ZnO NWs.

Effects of Doping in Organic Electroluminescent Devices Doped with a Fluorescent Dye

  • Kang, Gi-Wook;Ahn, Young-Joo;Lee, Chang-Hee
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.1-5
    • /
    • 2001
  • The effect of doping on the energy transfer and charge carrier trapping processes has been studied in organic light-emitting diodes (OLEDs) doped with a fluorescent laser dye. The devices consisted of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenyl-4,4'-diamine (TPD) as a hole transporting layer, tris(8-hydroxyquinoline) aluminum ($Alq_3$) as the host, and a fluorescent dye, 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro-1 H,5H-benzo[i,j]quinolizin-8-yl) vinyl]-4H-pyran) (DCM2) as the dopant. Temperature dependence of the current-voltage-luminescence (I-V-L) characteristics, the electroluminescence (EL) and photoluminescence (PL) spectra are studied in the temperature ranging between 15 K and 300 K. The emission from DCM2 was seen to be much stronger compared with the emission from $Alq_3$, indicative of efficient energy transfer from $Alq_3$ to DCM2. In addition, the EL emission from DCM2 increasd with increasing temperature while the emission from the host $Alq_3$ decreased. The result indicates that direct charge carrier trapping becomes efficient with increasing temperature. The EL emission from DCM2 shows a slightly sublinear dependence on the current density, implying the enhanced quenching of excitons at high current densities due to the exciton-exciton annihilation.

  • PDF

Size-dependent Optical and Electrical Properties of PbS Quantum Dots

  • Choi, Hye-Kyoung;Kim, Jun-Kwan;Song, Jung-Hoon;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.186-186
    • /
    • 2012
  • This report investigates a new synthetic route and the size-dependent optical and electrical properties of PbS nanocrystal quantum dots (NQDs) in diameters ranging between 1.5 and 6 nm. Particularly we synthesize ultra-small sized PbS NQDs having extreme quantum confinement with 1.5~2.9 nm in diameter (2.58~1.5 eV in first exciton energy) for the first time by adjusting growth temperature and growth time. In this region, the Stokes shift increases as decreasing size, which is testimony to the highly quantum confinement effect of ultra-small sized PbS NQDs. To find out the electrical properties, we fabricate self-assembled films of PbS NQDs using layer by layer (LBL) spin-coating method and replacing the original ligands with oleic acid to short ligands with 1, 2-ethandithiol (EDT) in the course. The use of capping ligands (EDT) allows us to achieve effective electrical transport in the arrays of solution processed PbS NQDs. These high-quality films apply to Schottky solar cell made in an glass/ITO/PbS/LiF/Al structure and thin-film transistor varying the PbS NQDs diameter 1.5~6 nm. We achieve the highest open-circuit voltage (<0.6 V) in Schottky solar cell ever using PbS NQDs with first exciton energy 2.58 eV.

  • PDF

Growth and photoluminescence of the strained ZnTe/ZnMnTe single quantum well (스트레인을 받는 ZnTe/ZnMnTe 단일양자우물의 성장과 광발광 특성)

    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.269-269
    • /
    • 2002
  • ZnTe/ZnMnTe single quantum well of high quality was grown by hot-wall epitaxy, in which ZnMnTe layer was used as a barrier. It was found that ZnTe well layer was under severe strain. Very sharp luminescent peaks of the heavy-hole exciton (el-hhl) and the light-hole exciton (el-lhl) were observed from the photoluminescence (PL) measurement. As the well layer thickness increases, the peaks associated with excitons of (el-hhl) and (el-lhl) were shifted toward the lower energy side. The temperature dependence of the PL peak intensity was well explained by the thermal activation theory.

Growth and photoluminescence of the strained ZnTe/ZnMnTe single quantum well (스트레인을 받는 ZnTe/ZnMnTe 단일양자우물의 성장과 광발광 특성)

  • 최용대
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.6
    • /
    • pp.267-271
    • /
    • 2002
  • ZnTe/ZnMnTe single quantum well of high quality was grown by hot-wall epitaxy, in which ZnMnTe layer was used as a barrier. It was found that ZnTe well layer was under severe strain. Very sharp luminescent peaks of the heavy-hole exciton (el-hhl) and the light-hole exciton (el-lhl) were observed from the photoluminescence (PL) measurement. As the well layer thickness increases, the peaks associated with excitons of (el-hhl) and (el-lhl) were shifted toward the lower energy side. The temperature dependence of the PL peak intensity was well explained by the thermal activation theory.

A Study on photoluminescience of ZnSe/GaAs epilayer

  • Park, Changsun;Kwangjoon Hong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.84-84
    • /
    • 2003
  • The ZnSe epilayers were grown on the GaAs substrate by hot wall epitaxy. After the ZnSe epilayers treated in the vacuum-, Zn-, and Se-atmosphere, respectively, the defects of the epilayer were investigated by means of the low-temperature photoluminescence measurement. The dominant peaks at 2.7988 eV and 2.7937 eV obtained from the PL spectrum of the as-grown ZnSe epilayer were found to be consistent with the upper and the lower polariton peak of the exciton, I$_2$ (D$^{\circ}$, X), bounded to the neutral donor associated with the Se-vacancy. This donor-impurity binding energy was calculated to be 25.3meV The exciton peak, lid, at 2.7812 eV was confirmed to be bound to the neutral acceptor corresponded with the Zn-vacancy. The I$_1$$\^$d/ peak was dominantly observed in the ZnSe/GaAs:Se epilayer treated in the Se-atmosphere. This Se-atmosphere treatment may convert the ZnSe/GaAs:Se epilayer into the p-type. The SA peak was found to be related to a complex donor like a (V$\sub$se/ - V$\sub$zn/) - V$\sub$zn-/

  • PDF

Low roll-off of efficiency with increasing current density in phosphorescent OLEDs

  • Kang, Jae-Wook;Lee, Se-Hyung;Park, Hyung-Dol;Jeong, Won-Ik;Yoo, Kyung-Mo;Park, Young-Seo;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1654-1657
    • /
    • 2007
  • We demonstrate that the reduction of quantum efficiency with increasing current density in phosphorescent light emitting diodes (PhOLEDs) is related to the formation of excitons in hole transporting layer based on the analysis of emission spectra and exciton formation zone. By employing dual emitting layerm we could achieve maintaining quantum efficiency at high current density up to $10000\;cd/m^2$ as 13.1% compared to the devices with single emitting layer (S-EML) (${\eta}_{ext}$= 6.9% at $10000\;cd/m^2$).

  • PDF

Properties of photoluminescience for ZnSe/GaAs epilayer grown by hot wall epitaxy

  • Hong, Kwangjoon;Baek, Seungnam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.3
    • /
    • pp.105-110
    • /
    • 2003
  • The ZnSe epilayers were grown on the GaAs substrate by hot wall epitaxy. After the ZnSe epilayers treated in the vacuum-, Zn-, and Se-atmosphere, respectively, the defects of the epilayer were investigated by means of the low-temperature photoluminescence measurement. The dominant peaks at 2.7988 eV and 2.7937 eV obtained from the PL spectrum of the as-grown ZnSe epilayer were found to be consistent with the upper and the lower polariton peak of the exciton, $I_{2}$ ($D^{\circ}$, X), bounded to the neutral donor associated with the Se-vacancy. This donor-impurity binding energy was calculated to be 25.3 meV, The exciton peak, $I_{1}^{d}$ at 2.7812 eV was confirmed to be bound to the neutral acceptor corresponded with the Zn-vacancy. The $I_{1}^{d}$ peak was dominantly observed in the ZnSe/GaAs : Se epilayer treated in the Se-atmosphere. This Se-atmosphere treatment may convert the ZnSe/GaAs : Se epilayer into the p-type. The SA peak was found to be related to a complex donor like a $(V_{se}-V_{zn})-V_{zn}$.

Photocurrent characteristics of close-packed HgTe nanoparticles in the infrared-wavelength range (적외선 영역에서의 HgTe 나노입자 광전류 특성)

  • Kim, Hyun-Suk;Park, Byung-Jun;Kim, Jin-Hyoung;Lee, Jun-Woo;Kim, Dong-Won;Cho, Kyoung-Ah;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.25-28
    • /
    • 2004
  • Photocurrent spectrum, photoresponse, and I-V measurements were made for close-packed HgTe nanoparticles without organic capping materials to investigate their photocurrent characteristics in the infrared range. In absorption and photoluminescence (PL) spectra taken for the close-packed nanoparticles film, the wavelengths of exciton peaks was red-shifted, compared with organic capped HgTe nanoparticles dispersed in solution. This red-shift is caused by the lessening of the exciton binding energy. The I-V curves and photoresponse for the close-packed nanoparticles film reveal their dark current and fast photoresponse with no current decay, respectively. The observation suggests that the HgTe nanoparticles are a very prospect material applicable for photodetectors in the whole IR range.

  • PDF

Temperature Dependence of Excitonic Transitions in GaN Grown by MOCVD

  • Guangde Chen;Jingyu Lin;Hongxing Jiang;Kim, Jung-Hwan;Park, Sung-Eul
    • Journal of Photoscience
    • /
    • v.7 no.1
    • /
    • pp.27-30
    • /
    • 2000
  • The Photoluminescence (PL) measurement results of a very good quality GaN sample grown by metalorganic chemical vapor deposition (MOCVD) are reported. The temperature dependences of peak position, emission intensity, and the full width at half maximum (FWHM) of free-exciton (FX) A and B are presented. Our results show the fast thermal quenching of FX transition intensities and predominantly acoustic phonon scattering of emission line broadening. The transition-energy-shift following the Varshni's empirical equation, and by using it to fit the data, E$\_$A1/(T) = 3.4861 eV -6.046 $\times$ 10$\^$-4/T$^2$ (620.3+ T) eV, E$\_$B1/(T) = 3.4928 eV -4.777 $\times$ 10$\^$-4/T$^2$ / (408.2+ T) eV and E$\_$A2/ = 3.4991 eV -4.426 $\times$ 10$\^$-4/ T$^2$ / (430.6+ T) eV for A(n=1), B(n=1), and A(n=2) are obtained respectively.

  • PDF