• Title/Summary/Keyword: excitation intensity

Search Result 366, Processing Time 0.043 seconds

Examining Synchronous Fluorescence Spectra of Dissolved Organic Matter for River BOD Prediction (하천수 BOD 예측을 위한 용존 자연유기물질의 synchronous 형광 스펙트럼 분석)

  • Hur, Jin;Park, Min-Hye
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.236-243
    • /
    • 2007
  • Fluorescence measurements of dissolved organic matter (DOM) have the superior advantages over other analysis tools for the applications to water quality management due to their rapid analysis. It is known that protein-like fluorescence characteristics are well corelated with microbial activities and biodegradable organic matter. In this study, potential biochemical oxygen demand (BOD) predictor were explored using the fluorescence peak intensities and/or the integrated fluorescence intensities derived from synchronous fluorescence spectra and the first derivative spectra of river samples. A preliminary study was conducted using a mixture of a river and a treated sewage to test the feasibility of the approach. It was demonstrated that the better BOD predictor can be derived from synchronous fluorescence spectra and the derivatives when the difference between the emission and the excitation wavelengths (${\Delta}{\gamma}$) was large. The efficacy of several selected fluorescence parameters was rivers in Seoul. The fluorescence parameters exhibited relatively good correlation coefficients with the BOD values, ranging from 0.59 to 0.90. Two parameters were suggested to be the optimum BOD predictors, which were a fluorescence peak at a wavelength of 283 nm from the synchronous spectrum at the ${\Delta}{\gamma}$ value of 75 nm, and the integrated fluorescence intensity of the first derivatives of the spectra at the wavelength range between 245 nm and 280 nm. Each BOD predictor showed the correlation coefficients of 0.89 and 0.90, respectively. It is expected that the results of this study will provide important information to develop a real-time efficient sensor for river BOD in the future.

Preparation and Luminescent Property of Eu3+-doped A3Al1-zInzO4F (A = Ca, Sr, Ba, z = 0, 0.1) Phosphors (Eu3+-doped A3Al1-zInzO4F (A = Ca, Sr, Ba, z = 0, 0.1)의 합성과 형광특성)

  • Kim, Yeo-Jin;Park, Sang-Moon
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.644-649
    • /
    • 2011
  • [ $A_{3-2x/3}Al_{1-z}In_{z}O_4F:Eu_x^{3+}$ ](A = Ca, Sr, Ba, x = -0.15, z = 0, 0.1) oxyfluoride phosphors were simply prepared by the solid-state method at $1050^{\circ}C$ in air. The phosphors had the bright red photoluminescence (PL) spectra of an $A_{3-2x/3}Al_{1-z}In_{z}O_4F$ for $Eu^{3+}$ activator. X-ray diffraction (XRD) patterns of the obtained red phosphors were exhibited for indexing peak positions and calculating unit-cell parameters. Dynamic excitation and emission spectra of $Eu^{3+}$ activated red oxyfluoride phosphors were clearly monitored. Red and blue shifts gradually occurred in the emission spectra of $Eu^{3+}$ activated $A_3AlO_4F$ oxyfluoride phosphors when $Sr^{2+}$ by $Ca^{2+}$ and $Ba^{2+}$ ions were substituted, respectively. The concentration quenching as a function of $Eu^{3+}$ contents in $A_{3-2x/3}AlO_4F:Eu^{3+}$ (A = Ca, Sr, Ba) was measured. The interesting behaviors of defect-induced $A_{3-2x/3}Al_{1-z}In_{z}O_{4-{\alpha}}F_{1-{\delta}}$ phosphors with $Eu^{3+}$ activator are discussed based on PL spectra and CIE coordinates. Substituting $In^{3+}$ into the $Al^{3+}$ position in the $A_{3-2x/3}AlO_4F:Eu^{3+}$ oxyfluorides resulted in the relative intensity of the red emitted phosphors noticeably increasing by seven times.

Study on Pressure Fluctuations Observed in Combustion of Oxygen-Rich Preburners (산화제 과잉 예연소기 연소에서 관찰되는 압력섭동에 대한 연구)

  • Seo, Seonghyeon;Kang, Sang Hun;Lee, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.122-127
    • /
    • 2013
  • The paper includes the analytic results of pressure fluctuation data from the combustion of an oxidizer-rich preburner applicable to high-performance, closed-cycle liquid rocket engine systems. The combustion experiments went through two different steps of a chamber pressure during single run. Self-excited pressure fluctuations with a frequency of 78 Hz were observed only at the relatively low chamber pressure condition. These pressure fluctuations are regarded as a bulk mode. The intensity of pressure fluctuations by a root-mean-square value is 13.3% normalized by the chamber static pressure and no pressure excitation was observed at the design pressure condition. The bulk mode has an identical phase across the inside of the chamber and reveals the similar characteristics to the Helmholtz resonator.

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.

Structural, Morphological, and Optical Properties of LaNbO4:RE3+ (RE = Dy, Dy/Sm, Sm) Phosphors (LaNbO4:RE3+ (RE = Dy, Dy/Sm, Sm) 형광체의 구조, 표면, 광학 특성)

  • Lee, Jinhong;Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.271-276
    • /
    • 2018
  • The effects of activator ion on the structural, morphological, and optical properties of $LaNbO_4:RE^{3+}$ (RE = Dy, Dy/Sm, Sm) phosphors were investigated. X-ray diffraction patterns exhibited that all the phosphors showed a monoclinic system with a main (112) diffraction peak, irrespective of the concentration and type of activator ions. The grain size showed a slightly decreasing tendency as the concentration of $Sm^{3+}$ ions increased. The excitation spectra of the $LaNbO_4:Dy^{3+}$, $Sm^{3+}$ phosphor powders consisted of a strong charge transfer band centered at 259 nm in the range of 220-290 nm and five weak peaks. The emission spectra of the $La_{0.95}NbO_4$:5 mol% $Dy^{3+}$ phosphors exhibited two intense yellow and blue bands centered at 575 nm and 479 nm respectively, which resulted from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ and $^4F_{9/2}{\rightarrow}^6H_{15/2}$ transitions of $Dy^{3+}$. As the concentration of $Sm^{3+}$ was increased, the intensity of the yellow emission band was gradually decreased, while those of orange and red emission bands centered at 604 and 646 nm began to appear and reached maxima at 5 mol%, and then decreased rapidly with further increases in the $Sm^{3+}$ concentration. These results indicated that white light emission could be realized by controlling the concentrations of the $Dy^{3+}$ and $Sm^{3+}$ ions incorporated into the $LaNbO_4$ host crystal.

Fabrication of Fluorescent Labeled Bi-compartmental Particles via the Micromolding Method (미세 성형 방법을 이용한 형광 표지된 이중 분획 입자의 제조)

  • Shim, Gyurak;Jeong, Seong-Geun;Hong, Woogyeong;Kang, Koung-Ku;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.826-831
    • /
    • 2018
  • This study presents fabrication of bi-compartmental particles labeled by multiple fluorescence. To compartmentalize fluorescent expression at the particle, two fluorescent dyes with less overlap of the excitation and emission spectra are selected. To ensure the fluorescence stability, the fluorescent dyes contain acrylate functional groups in the molecules so that they can be cross-linked together with monomers constituting the particle. Strong fluorescent expression and compartmentalization were observed at the particle fabricated using the selected fluorescent dyes through confocal microscopy. Furthermore, long-term fluorescence stability was verified by measuring fluorescent expression and intensity for 4 weeks. We anticipate that the bi-compartmental particles labeled by multiple fluorescence can be widely used for multi-target drug delivery system, analysis of 3 dimensional Brownian motion, and investigation of 3 dimensional complex self-assembled morphologies.

Effect of Deposition Temperature on the Optical Properties of La2MoO6:Dy3+,Eu3+ Phosphor Thin Films (증착 온도에 따른 La2MoO6:Dy3+,Eu3+ 형광체 박막의 광학 특성)

  • Cho, Shinho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.387-392
    • /
    • 2019
  • $Dy^{3+}$ and $Eu^{3+}$-co-doped $La_2MoO_6$ phosphor thin films were deposited on sapphire substrates by radio-frequency magnetron sputtering at various growth temperatures. The phosphor thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy, ultraviolet-visible spectroscopy, and fluorescence spectrometry. The optical transmittance, absorbance, bandgap, and photoluminescence intensity of the $La_2MoO_6$ phosphor thin films were found to depend on the growth temperature. The XRD patterns demonstrated that all the phosphor thin films, irrespective of growth temperatures, had a tetragonal structure. The phosphor thin film deposited at a growth temperature of $100^{\circ}C$ indicated an average transmittance of 85.3% in the 400~1,100 nm wavelength range and a bandgap energy of 4.31 eV. As the growth temperature increased, the bandgap energy gradually decreased. The emission spectra under ultraviolet excitation at 268 nm exhibited an intense red emission line at 616 nm and a weak emission line at 699 nm due to the $^5D_0{\rightarrow}^7F_2$ and $^5D_0{\rightarrow}^7F_4$ transitions of the $Eu^{3+}$ ions, respectively, and also featured a yellow emission band at 573 nm, resulting from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of the $Dy^{3+}$ ions. The results suggest that $La_2MoO_6$ phosphor thin films can be used as light-emitting layers for inorganic thin film electroluminescent devices.

Photoacoustic imaging of occlusal incipient caries in the visible and near-infrared range

  • da Silva, Evair Josino;de Miranda, Erica Muniz;de Oliveira Mota, Claudia Cristina Brainer;Das, Avishek;Gomes, Anderson Stevens Leonidas
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.107-115
    • /
    • 2021
  • Purpose: This study aimed to demonstrate the presence of dental caries through a photoacoustic imaging system with visible and near-infrared wavelengths, highlighting the differences between the 2 spectral regions. The depth at which carious tissue could be detected was also verified. Materials and Methods: Fifteen permanent molars were selected and classified as being sound or having incipient or advanced caries by visual inspection, radiography, and optical coherence tomography analysis prior to photoacoustic scanning. A photoacoustic imaging system operating with a nanosecond pulsed laser as the light excitation source at either 532 nm or 1064 nm and an acoustic transducer at 5 MHz was developed, characterized, and used. En-face and lateral(depth) photoacoustic signals were detected. Results: The results confirmed the potential of the photoacoustic method to detect caries. At both wavelengths, photoacoustic imaging effectively detected incipient and advanced caries. The reconstructed photoacoustic images confirmed that a higher intensity of the photoacoustic signal could be observed in regions with lesions, while sound surfaces showed much less photoacoustic signal. Photoacoustic signals at depths up to 4 mm at both 532 nm and 1064 nm were measured. Conclusion: The results presented here are promising and corroborate that photoacoustic imaging can be applied as a diagnostic tool in caries research. New studies should focus on developing a clinical model of photoacoustic imaging applications in dentistry, including soft tissues. The use of inexpensive light-emitting diodes together with a miniaturized detector will make photoacoustic imaging systems more flexible, user-friendly, and technologically viable.

Enhancement of Photoluminescence by Ag Localized Surface Plasmon Resonance for Ultraviolet Detection

  • Lyu, Yanlei;Ruan, Jun;Zhao, Mingwei;Hong, Ruijin;Lin, Hui;Zhang, Dawei;Tao, Chunxian
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • For higher sensitivity in ultraviolet (UV) and even vacuum ultraviolet (VUV) detection of silicon-based sensors, a sandwich-structured film sensor based on Ag Localized Surface Plasmon Resonance (LSPR) was designed and fabricated. This film sensor was composed of a Ag nanoparticles (NPs) layer, SiO2 buffer and fluorescence layer by physical vapour deposition and thermal annealing. By tuning the annealing temperature and adding the SiO2 layer, the resonance absorption wavelength of Ag NPs matched with the emission wavelength of the fluorescence layer. Due to the strong plasmon resonance coupling and electromagnetic field formed on the surface of Ag NPs, the radiative recombination rate of the luminescent materials and the number of fluorescent molecules in the excited state increased. Therefore, the fluorescent emission intensity of the sandwich-structured film sensor was 1.10-1.58 times at 120-200 nm and 2.17-2.93 times at 240-360 nm that of the single-layer film sensor. A feasible method is provided for improving the detection performance of UV and VUV detectors.

Properties of Green-Emitting CaNb2O6:Tb3+ Thin Films Grown by Radio-Frequency Magnetron Sputtering (라디오파 마그네트론 스퍼터링으로 성장한 녹색 발광 CaNb2O6:Tb3+ 박막의 특성)

  • Seonkyeong Kim;Shinho Cho
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.400-405
    • /
    • 2023
  • Tb3+-doped CaNb2O6 (CaNb2O6:Tb3+) thin films were deposited on quartz substrates at a growth temperature of 300 ℃ using radio-frequency magnetron sputtering. The deposited thin films were annealed at several annealing temperatures for 20 min and characterized for their structural, morphological, and luminescent properties. The experimental results showed that the annealing temperature had a significant effect on the properties of the CaNb2O6:Tb3+ thin films. The crystalline structure of the as-grown CaNb2O6:Tb3+ thin films transformed from amorphous to crystalline after annealing at temperatures greater than or equal to 700 ℃. The emission spectra of the thin films under excitation at 251 nm exhibited a dominant emission band at 546 nm arising from the 5D47F5 magnetic dipole transition of Tb3+ and three weak emission bands at 489, 586, and 620 nm, respectively. The intensity of the 5D47F5 (546 nm) magnetic dipole transition was greater than that of the 5D47F6 (489 nm) electrical dipole transition, indicating that the Tb3+ ions in the host crystal were located at sites with inversion symmetry. The average transmittance at wavelengths of 370~1,100 nm decreased from 86.8 % at 700 ℃ to 80.5 % at an annealing temperature of 1,000 ℃, and a red shift was observed in the bandgap energy with increasing annealing temperature. These results suggest that the annealing temperature plays a crucial role in developing green light-emitting CaNb2O6:Tb3+ thin films for application in electroluminescent displays.