Browse > Article
http://dx.doi.org/10.9713/kcer.2018.56.6.826

Fabrication of Fluorescent Labeled Bi-compartmental Particles via the Micromolding Method  

Shim, Gyurak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Jeong, Seong-Geun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Hong, Woogyeong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Kang, Koung-Ku (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Lee, Chang-Soo (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Korean Chemical Engineering Research / v.56, no.6, 2018 , pp. 826-831 More about this Journal
Abstract
This study presents fabrication of bi-compartmental particles labeled by multiple fluorescence. To compartmentalize fluorescent expression at the particle, two fluorescent dyes with less overlap of the excitation and emission spectra are selected. To ensure the fluorescence stability, the fluorescent dyes contain acrylate functional groups in the molecules so that they can be cross-linked together with monomers constituting the particle. Strong fluorescent expression and compartmentalization were observed at the particle fabricated using the selected fluorescent dyes through confocal microscopy. Furthermore, long-term fluorescence stability was verified by measuring fluorescent expression and intensity for 4 weeks. We anticipate that the bi-compartmental particles labeled by multiple fluorescence can be widely used for multi-target drug delivery system, analysis of 3 dimensional Brownian motion, and investigation of 3 dimensional complex self-assembled morphologies.
Keywords
Fluorescent labeled particle; Bi-compartmental particle; Compartmentalization; Fluorescence stability; Micromolding method;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Kim, J., Choi, C. H., Yeom, S. J., Eom, N., Kang, K. K. and Lee, C. S., "Directed Assembly of Janus Cylinders by Controlling the Solvent Polarity," Langmuir, 33, 7503-7511(2017).   DOI
2 Mohraz, A. and Solomon, M. J., "Direct Visualization of Colloidal Rod Assembly by Confocal Microscopy," Langmuir, 21, 5298-5306(2005).   DOI
3 McGorty, R., Fung, J., Kaz, D. and Manoharan, V. N., "Colloidal Self-assembly at an Interface," Mater. Today, 13, 34-42(2010).
4 Oh, S., Kang, W. K., Kang, J. W., Kim, K. S. and Lee, H., "Conversion of CdTe Nanoparticles into Nanoribbons via Self-Assembly," Korean Chem. Eng. Res., 50(6), 1082-1085(2012).   DOI
5 Costanzo, M., Carton, F., Marengo, A., Berlier, G., Stella, B., Arpicco, S. and Malatesta, M., "Fluorescence and Electron Microscopy to Visualize the Intracellular Fate of Nanoparticles for Drug Delivery," Eur. J. Histochem., 60(2), 107-115(2016).
6 Zhang, L. W. and Monteiro-Riviere, N. A., "Use of Confocal Microscopy for Nanoparticle Drug Delivery through Skin," J. Biomed. Opt., 18(6), 061214-1-5(2013).   DOI
7 Jeon, W., Kim, G. Y., Kim, G. H. and Ha, C. S., "Preparation and Characterization of Multilayer Microcapsules using Biocompatible Polymers," Korean Chem. Eng. Res., 48(2), 178-184(2010).
8 Lee, Y. C. and Kang, I. J., "Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs," Korean Chem. Eng. Res., 54(2), 200-205(2016).   DOI
9 Hwang, J., Lee, K., Gilad, A. A. and Choi, J., "Synthesis of Beta-glucan Nanoparticles for the Delivery of Single Strand DNA," Biotechnol. Bioprocess Eng., 23, 144-149(2018).   DOI
10 Reenan, A. V., Jong, A. M. D., Toonder, J. M. J. D. and Prins, M. W. J., "Integrated Lab-on-chip Biosensing Systems Based on Magnetic Particle Actuation - a Comprehensive Review," Lab Chip, 14, 1966-1986(2014).   DOI
11 Kim, Y. M., Kim, J. H., Park, S. C., Park, Y. H. and Kang, M. K., "Characteristic as a Gene Delivery System of Water Soluble Chitosan Conjugated with Cationic Peptide," KSBB J., 31(4), 300-311(2016).   DOI
12 Bally, M., Graule, M., Parra, F., Larson, G. and Hook, F., "A Virus Biosensor with Single Virus-particle Sensitivity Based on Fluorescent Vesicle Labels and Equilibrium Fluctuation Analysis," Bioinerphases, 8(1), 1-9(2013).   DOI
13 Bhunia, S. K., Saha, A., Maity, A. R., Ray, S. C. and Jana, N. R., "Carbon Nanoparticle-based Fluorescent Bioimaging Probes," Sci. Rep., 3(1473), 1-7(2013).
14 Zrazhevskiy, P., Sena, M. and Gao, X., "Designing Multifunctional Quantum Dots for Bioimaging, Detection, and Drug Delivery," Chem. Soc. Rev., 39(11), 4326-4354(2010).   DOI
15 Chaudhary, V. and Bhowmick, A. K., "Green Synthesis of Fluorescent Carbon Nanoparticles from Lychee (Litchi chinensis) Plant," Korean J. Chem. Eng., 32(8), 1707-1711(2015).   DOI
16 Lee, E. J., "Recent Advances in Protein-based Nanoparticles," Korean J. Chem. Eng., 35(9), 1765-1778(2018).   DOI
17 Choi, E. S., Kang, Y. Y. and Mok, H., "Evaluation of the Enhanced Antioxidant Activity of Curcumin within Exosomes by Fluorescence Monitoring, " Biotechnol. Bioprocess Eng., 23, 150-157(2018).   DOI
18 Lee, J. S., Go, N. K., Lee, S. Y. and Hur, W., "Uptake of Fibroin Microspheres by 3T3 Cells," KSBB J., 29(5), 328-335(2014).   DOI
19 Yi, Y., Sanchez, L., Gao, Y. and Yu, Y., "Janus Particles for Biological Imaging and Sensing," Analyst, 141(12), 3526-3539(2016).   DOI
20 Choi, C. H., Kang, S. M., Jin, S. H., Yi, H. and Lee, C. S., "Controlled Fabrication of Multicompartmental Polymeric Microparticles by Sequential Micromolding via Surface-Tension-Induced Droplet Formation," Langmuir, 31(4), 1328-1335(2015).   DOI
21 Nie, Z., Li, W., Seo, M., Xu, S. and Kumacheva, E., "Janus and Ternary Particles Generated by Microfluidic Synthesis: Design, Synthesis, and Self-assembly," J. Am. Chem. Soc., 128, 9408-9412(2006).   DOI
22 Hwang, S. and Lahann, J., "Differentially Degradable Janus Particles for Controlled Release Applications, " Macromol. Rapid Commun., 33, 1178-1183(2012).   DOI
23 Sanchez, L., Patton, P., Anthony, S. M., Yi, Y. and Yu, Y., "Tracking Single-particle Rotation during Macrophage Uptake," Soft Matter, 11, 5346-5352(2015).   DOI
24 Hong, L., Cacciuto, A., Luijten, E., and Granick, S., "Clusters of Charged Janus Spheres," Nano Lett., 6(11), 2510-2514(2006).   DOI
25 Kang, S. M., Choi, C. H., Kim, J., Yeom, S. J., Lee, D., Park, B. J. and Lee, C. S., "Capillarity-induced Directed Self-assembly of Patchy Hexagram Particles at the Air-water Interface," Soft Matter, 12, 5847-5853(2016).   DOI
26 Tang, J. L., Schoenwald, K., Potter, D., White, D. and Sulchek, T., "Bifunctional Janus Microparticles with Spatially Segregated Proteins," Langmuir, 28, 10033-10039(2012).   DOI
27 Seiffert, S. and Weitz, D. A., "Microfluidic Fabrication of Smart Microgels from Macromolecular Precursors," Polymer, 51, 5883-5889(2010).   DOI
28 Choi, C. H., Lee, J., Yoon, K., Tripathi, A., Stone, H. A., Weitz, D. A. and Lee, C. S., "Surface-tension-induced Synthesis of Complex Particles Using Confined Polymeric Fluids," Angew. Chem., Int. Ed., 49, 7748-7752(2010).   DOI
29 Yeom, S. J., Kang, S. M., Kim, J., Nam, J. O., Eom, N., Lee, S. and Lee, C. S., "Fabrication of Multicompartment Particles via Sequential Micromolding Method," Polym. Korea, 40(3), 457-463(2016).   DOI
30 Love, J. C., Wolfe, D. B., Jacobs, H. O. and Whitesides, G. M., "Microscope Projection Photolithography for Rapid Prototyping of Masters with Micron-Scale Features for Use in Soft Lithography," Langmuir, 17, 6005-6012(2001).   DOI
31 Azzam, W. R., "Reduction of the Shrinkage-Swelling Potential with Polymer Nanocomposite Stabilization", J. Appl. Polym. Sci., 123, 299-306(2012).   DOI
32 Hwang, S., Choi, C. H. and Lee, C. S., "Regioselective Surface Modification of PDMS Microfluidic Device for the Generation of Monodisperse Double Emulsions," Macromol. Res., 20(4), 422-428(2012).   DOI
33 Shim, G., Yeom, S. J., Jeong, S. G., Kang, K. K. and Lee, C. S., "Fabrication of Anisotropic Hexagram Particles by using the Micromolding Technique and Selective Localization of Patch," Clean Technol, 24(2), 105-111(2018).   DOI
34 Doytcheva, M., Dotcheva, D., Stamenova, R. and Tsvetanov, C., "UV-Initiated Crosslinking of Poly(ethylene oxide) with Pentaerythritol Triacrylate in Solid State," Macromol. Mater. Eng., 286, 30-33(2001).   DOI
35 https://www.thermofisher.com/kr/ko/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html.
36 Moschakis, T., Murray, B. S. and Dickinson, E., "Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-separating Emulsion Containing Nonadsorbing Polysaccharide," Langmuir, 22, 4710-4719(2006).   DOI
37 Chestnut, M. H., "Confocal Microscopy of Colloids," Curr. Opin. Colloid Interface Sci., 2, 158-161(1997).   DOI
38 Murray, C. A. and Grier, D. G., "Video Microscopy of Monodisperse Colloidal Systems," Annu. Rev. Phys. Chem., 47, 421-462(1996).   DOI
39 Dinsmore, A. D., Weeks, E. R., Prasad, V., Levitt, A. C. and Weitz, D. A., "Three-dimensional Confocal Microscopy of Colloids," Appl. Opt., 40(24), 4152-4159(2001).   DOI
40 Blaaderen, A. V., Peetermans, J., Maret, G. and Dhont, J. K. G., "Long-time Self-Diffusion of Spherical Colloidal Particles Measured with Fluorescence Recovery after Photobleaching," J. Chem. Phys., 96(6), 4591-4603(1992).   DOI
41 Ruthardt, N., Lamb, D. C. and Bräuchle, C., "Single-particle Tracking as a Quantitative Microscopy-based Approach to Unravel Cell Entry Mechanisms of Viruses and Pharmaceutical Nanoparticles," Mol. Ther., 19(7), 1199-1211(2011).   DOI