• 제목/요약/키워드: excitability

검색결과 171건 처리시간 0.029초

근위축성 측삭 경화증의 하 운동 신경원 과흥분성: 운동유발전위를 이용한 분석 (Lower Motor Neuron Hyperexcitability in Amyotrophic Lateral sclerosis: Analysis Using Motor Evoked Potentials)

  • 배종석;홍석찬;김민기;김병준
    • Annals of Clinical Neurophysiology
    • /
    • 제5권1호
    • /
    • pp.21-26
    • /
    • 2003
  • Background & Objectives: Hyperexcitablity of motor system is a well-established characteristic pathophysiologic finding of amyotrophic lateral sclerosis (ALS). Whereas little is known about the source of excitability according to the progression of the disease. We evaluated the excitability and its source in advanced ALS patients using transcranial magnetic stimulation (TMS). Meterial & Methods: Motor evoked potentials (MEP) by TMS were recorded for abductor pollicis brevis muscles in 20 patients, 11 men and 9 women, with ALS. Mean age was $54.2{\pm}12.1years$, and mean disease duration was $13.9{\pm}13.4years$. Serial magnetic stimulations were applied to get the parameters; excitability threshold (ET), amplitude and latency of MEP. We also had a facilitated MEP (fMEP). Results: The parameters were analyzed according to the clinical settings. ET was higher in ALS(mean $63.5{\pm}18.1$) than normal control (mean $46.0{\pm}8.4$, p<0.01). Amplitudes of MEP were reduced in ALS ($2.6{\pm}3.6mV$; control $6.5{\pm}3.1mV$, p<0.01). Duration of the disease and ET showed significant inverse correlation (Spearson correlation coefficient = -0.57, p<0.01). Duration of the disease and fMEP/MEP ratio showed less but also significant inverse correlation (Spearson correlation coefficient, r = -0.52, p < 0.05). Conclusions: Lower ET in advanced ALS patients, in spite of decreased fMEP/MEP ratio, may indicate the hyperexcitability of lower motor neurons in these patients. This study suggests that lower motor neurons is hyperexcitable due to upper motor neuron dysfunction at advanced stage.

  • PDF

Effects of Reactive Oxygen Species and Nitrogen Species on the Excitability of Spinal Substantia Gelatinosa Neurons

  • Park, Joo Young;Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제41권3호
    • /
    • pp.141-147
    • /
    • 2016
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are both important signaling molecules involved in pain transmission in the dorsal horn of the spinal cord. Xanthine oxidase (XO) is a well-known enzyme for the generation of superoxide anions ($O_2^{\bullet-}$), while S-nitroso-N-acetyl-DL-penicillamine (SNAP) is a representative nitric oxide (NO) donor. In this study, we used patch clamp recording in spinal slices of rats to investigate the effects of $O_2^{\bullet-}$ and NO on the excitability of substantia gelatinosa (SG) neurons. We also used confocal scanning laser microscopy to measure XO- and SNAP-induced ROS and RNS production in live slices. We observed that the ROS level increased during the perfusion of xanthine and xanthine oxidase (X/XO) compound and SNAP after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), which is an indicator of intracellular ROS and RNS. Application of ROS donors such as X/XO, ${\beta}-nicotinamide$ adenine dinucleotide phosphate (NADPH), and 3-morpholinosydnomimine (SIN-1) induced a membrane depolarization and inward currents. SNAP, an RNS donor, also induced membrane depolarization and inward currents. X/XO-induced inward currents were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger) and manganese(III) tetrakis(4-benzoic acid) porphyrin (MnTBAP; superoxide dismutase mimetics). Nitro-L-arginine methyl ester (NAME; NO scavenger) also slightly decreased X/XO-induced inward currents, suggesting that X/XO-induced responses can be involved in the generation of peroxynitrite ($ONOO^-$). Our data suggest that elevated ROS, especially $O_2^{\bullet-}$, NO and $ONOO^-$, in the spinal cord can increase the excitability of the SG neurons related to pain transmission.

정상 성인에서 경두개 직류 전류자극과 기능적 전기자극에 의한 대뇌피질의 활성화: 사례연구 (Cortical Activation by Transcranial Direct Current Stimulation and Functional Electrical Stimulation in Normal Subjects: 2 Case Studies)

  • 권용현;권중원;박상영;장성호
    • The Journal of Korean Physical Therapy
    • /
    • 제23권1호
    • /
    • pp.77-82
    • /
    • 2011
  • Purpose: Recently, many studies have demonstrated that application of external stimulation can modulate cortical excitability of the human brain. We attempted to observe cortical excitability using functional magnetic resonance imaging (fMRI) during the application of transcranial direct current stimulation (tDCS) or functional electrical stimulation (FES). Methods: We recruited two healthy subjects without a history of neurological or psychiatric problems. fMRI scanning was done during? each constant anodal tDCS and FES session, and each session was repeated three times. The tDCS session consisted of three successive phases (resting phase: 60sec dummy cycle: 10sec tDCS phase: 60sec). The FES session involved stimulation of wrist extensor muscles over two successive phase (resting phase: 15sec FES phase: 15sec). Results: The average map of the tDCS and FES analyses showed that the primary sensory-motor cortex area was activated in all subjects. Conclusion: Our findings show that cortical activation can be induced by constant anodal tDCS and FES. They suggest that the above stimuli have the potential for facilitating brain plasticity and modulating neural excitability if applied as specific therapeutic interventions for brain injured patients.

만성 편마비 환자에 대한 교감신경 활동 강화가 근 긴장도와 중추신경흥분성 변화에 미치는 영향 (Effect of the increased sympathetic outflow on the changes of muscle tone and central nervous system excitability in chronic stroke patients)

  • 강병길;남기원
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.5019-5026
    • /
    • 2011
  • 본 연구는 만성 편마비 환자의 교감신경 활동 강화가 근 긴장도 및 중추신경 흥분성 변화에 미치는 영향을 알아보기 위해 시행하였다. 연구기간은 2009년 10월 12일부터 12월 4일까지 실시하였으며, 연구대상자는 발병 후 6개월 이상 된 만성 편마비 환자 30명을 대상으로 하였다. 실험은 교감신경 활동을 강화하는 세 가지 과제(암산, 정적인 상태에서 쥐기운동, 쥐기운동 후 허혈)를 실시하였으며 측정은 과제를 수행하기 전과 중의 global synkinesis 수준과 중추신경원 활동전위을 각각 측정하였다. 중추신경원 활동전위는 H/Mmax비, V/Mmax비를 측정하였고, global synkinesis 수준은 근전도 활동전위의 실효치 값을 측정하여 분석하였다. 본 연구에서, global synkinesis 수준은 정적인 상태에서 쥐기 과제를 제외한 나머지 과제(암산, 쥐기 후 허혈)에서 슬관절 굴곡, 신전 시 감소했다(p<.05). 또한 V/Mmax비에서는 세 가지 과제 모두에서 감소하였다(p<.05). 결론적으로, 교감신경 활동 강화는 만성 편마비 환자의 중추신경 흥분성과 근 긴장도를 감소시킴을 알 수 있었다.

Enhanced Efficacy of the Commissural Transmission between Lateral Giants in the Sensitization of Crayfish Escape Behavior

  • C.Lee, Sun-Hee
    • The Korean Journal of Physiology
    • /
    • 제29권2호
    • /
    • pp.291-299
    • /
    • 1995
  • Lateral giant (LG)-mediated escape response of crayfish is sensitized by natural traumatic events. Such sensitization has previously been shown to be associated with increased transmission between primary afferents and sensory interneurons at the cholinergic synapse of LG escape reflex circuit. In the present study, it was firstly investigated as to whether transmission is also altered at other synapses of the LG-escape reflex circuit by traumatic shock-induced sensitization. Evidence that traumatic shock also directly affects the excitability of lateral giants is now provided by the finding that traumatic shock produces a significant reduction of the time needed for LG to recruit its contralateral homologue, which is defined as commissural delay. Octopamine, a naturally occurring neuromodulator in the crayfish nerve cord, has also been shown to enhance transmission at the cholinergic synapse between primary afferents and sensory interneurons, and has been conjectured to mediate sensitization. Like traumatic shock, $octopamine\;(10^{-5}-5{\times}10^{-4}\;M)$ also enhanced the efficacy of commissural transmission between lateral giants, as indicated by a significant reduction of commissural delay. This effect was blocked by an octopamine antagonist phentolamine, suggesting a specific action of octopamine on the octopamine receptor present on LGs. These observations suggest that both traumatic shocks and octopamine may cause a rather broad alteration in the excitability of the crayfish nervous system that contributes to the sensitization of the LG escape response.

  • PDF

Roles of Nitric Oxide in Vestibular Compensation

  • Jeong, Han-Seong;Jun, Jae-Yeoul;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권2호
    • /
    • pp.73-77
    • /
    • 2003
  • The effects of nitric oxide on the vestibular function recovery following unilateral labyrinthectomy (UL) were studied. Sprague-Dawley male rats, treated with nitric oxide liberating agent sodium nitroprusside (SNP) and NOS inhibitor $N^G$-nitro-L-arginine methyl ester (L-NAME), were subjected to destruction of the unilateral vestibular apparatus, and then spontaneous nystagmus was observed in the rat. To explore the effects of nitric oxide on the neuronal excitability, whole cell patch clamp technique was applied on isolated medial vestibular nuclear neurons. The frequency of spontaneous nystagmus in SNP treated rats was lesser than that of spontaneous nystagmus in control animals. In contrast, pre-UL treatment with L-NAME resulted in a significant increase in spontaneous nystagmus frequency. In addition, SNP increased the frequency of spontaneous action potential in isolated medial vestibular nuclear neurons. Potassium currents of the vestibular nuclear neurons were inhibited by SNP. After blockade of calcium dependent potassium currents by high EGTA (11 mM) in a pipette solution, SNP did not inhibit outward potassium currents. 1H-[1,2,4] oxadiazolo [4,3-a] quinozalin-1-one (ODQ), a specific inhibitor of soluble guanylyl cyclase, inhibited the effects of SNP on the spontaneous firing and the potassium current. These results suggest that nitric oxide after unilateral labyrinthectomy would help to facilitate vestibular compensation by inhibiting calcium-dependent potassium currents through increasing intracellular cGMP, and consequently would increase excitability in ipsilateral vestibular nuclear neurons.

Presynatic Expression of HCN Channel Subunits in Cerebellar Basket Cells

  • Yi, Jee-Hyun;Park, Kyung-Joon;Kang, Shin-Jung;Shin, Ki-Soon
    • Animal cells and systems
    • /
    • 제11권2호
    • /
    • pp.199-204
    • /
    • 2007
  • HCN (hyperpolarization-activated cyclic nucleotide-gated) channels, whose gene family consists of four subunits (HCN1-4), mediate depolarizing cation currents and contribute to controlling neuronal excitability. In the present study, immunohistochemical and electrophysiological approaches were used to elucidate the role of HCN channels in the cerebellum. Immunohistochemical labeling for HCN1 and HCN2 channels revealed localized expression of both channels at pinceau, the specialized structure of presynaptic axon terminals of basket cells. To determine the functional role of the presynaptic HCN channels, spontaneous inhibitory postsynaptic currents (IPSCs) were recorded from Purkinje cells, the main synaptic targets of basket cells in the cerebellum. While activation of HCN channels by 8-bromo-cAMP increased amplitude of spontaneous IPSCs, blockade of the activated HCN channels by subsequent ZD7288 application reduced the amplitude of spontaneous IPSCs to the level far below the control. Our results imply that modulation of HCN1 and HCN2 channels in presynaptic terminals of basket cells regulates neurotransmitter release, thereby controlling the excitability of Purkinje cells.

Depolarizing Effectors of Bradykinin Signaling in Nociceptor Excitation in Pain Perception

  • Choi, Seung-In;Hwang, Sun Wook
    • Biomolecules & Therapeutics
    • /
    • 제26권3호
    • /
    • pp.255-267
    • /
    • 2018
  • Inflammation is one of the main causes of pathologic pain. Knowledge of the molecular links between inflammatory signals and pain-mediating neuronal signals is essential for understanding the mechanisms behind pain exacerbation. Some inflammatory mediators directly modulate the excitability of pain-mediating neurons by contacting the receptor molecules expressed in those neurons. For decades, many discoveries have accumulated regarding intraneuronal signals from receptor activation through electrical depolarization for bradykinin, a major inflammatory mediator that is able to both excite and sensitize pain-mediating nociceptor neurons. Here, we focus on the final effectors of depolarization, the neuronal ion channels, whose functionalities are specifically affected by bradykinin stimulation. Particular G-protein coupled signaling cascades specialized for each specific depolarizer ion channels are summarized. Some of these ion channels not only serve as downstream effectors but also play critical roles in relaying specific pain modalities such as thermal or mechanical pain. Accordingly, specific pain phenotypes altered by bradykinin stimulation are also discussed. Some members of the effector ion channels are both activated and sensitized by bradykinin-induced neuronal signaling, while others only sensitized or inhibited, which are also introduced. The present overview of the effect of bradykinin on nociceptor neuronal excitability at the molecular level may contribute to better understanding of an important aspect of inflammatory pain and help future design of further research on the components involved and pain modulating strategies.

Changes of CA1 Excitability in Rats after Prenatal Methylazoxymethanol Treatment

  • Jang, Sung-Young;Choi, In-Sun;Cho, Jin-Hwa;Jang, Il-Sung;Lee, Maan-Gee;Choi, Byung-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권1호
    • /
    • pp.13-17
    • /
    • 2006
  • Experimentally induced cortical disorganization exhibits many anatomical features which are characteristic of cortical malformations in children with early-onset epilepsy. We used an immunocytochemical technique and extracellular field potential recordings from the dorsal hippocampus to determine whether the excitability of the CA1 pyramidal cells was enhanced in rats with exnerimentallv induced hippocampal dysplasia. Compared with control rats, the MAM-treated rats displayed a decrease of paired pulse inhibition. When $GABA_A$ receptor antagonists were blocked with $10{\mu}M$ bicuculline the amplitude of the second population spike of the MAM-treated of rats was similar to that of the first population spike, as was in the control rats. The MAM-treated rats had fewer somatostatin and parvalbumin-immunoreactive neurons than the control rats. These results suggest that the enhanced neuronal responsiveness of the in vivo recording of the CA1 in this animal model may involve a reduction of CA1 inhibition.